• Title/Summary/Keyword: Farey graph

Search Result 1, Processing Time 0.016 seconds

RELATIONSHIPS BETWEEN CUSP POINTS IN THE EXTENDED MODULAR GROUP AND FIBONACCI NUMBERS

  • Koruoglu, Ozden;Sarica, Sule Kaymak;Demir, Bilal;Kaymak, A. Furkan
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.569-579
    • /
    • 2019
  • Cusp (parabolic) points in the extended modular group ${\bar{\Gamma}}$ are basically the images of infinity under the group elements. This implies that the cusp points of ${\bar{\Gamma}}$ are just rational numbers and the set of cusp points is $Q_{\infty}=Q{\cup}\{{\infty}\}$.The Farey graph F is the graph whose set of vertices is $Q_{\infty}$ and whose edges join each pair of Farey neighbours. Each rational number x has an integer continued fraction expansion (ICF) $x=[b_1,{\cdots},b_n]$. We get a path from ${\infty}$ to x in F as $<{\infty},C_1,{\cdots},C_n>$ for each ICF. In this study, we investigate relationships between Fibonacci numbers, Farey graph, extended modular group and ICF. Also, we give a computer program that computes the geodesics, block forms and matrix represantations.