• Title/Summary/Keyword: Faraday efficiency

Search Result 27, Processing Time 0.022 seconds

A Study on Analysis of the Hydrogen-Oxygen Gas Generator Using Pulse Power Supply (펄스전원에 의한 수산화가스 발생기에 관한 연구)

  • 이정민;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.377-385
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electricity for the Hydrogen-Oxygen gas generator, Firstly chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated through Faraday's laws of electrolysis. After that, pulse power supply is designed for basic experiment which could be applied to the analysis of Hydrogen-Oxygen gas generator. In the basis of above steps, comparison and analysis of Hydrogen-Oxygen gas generator was conducted as variable frequency using pulse Power supply.

  • PDF

Life Cycle Assessment of Carbon Monoxide Production via Electrochemical CO2 Reduction: Analysis of Greenhouse Gas Reduction Potential (전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 전과정평가 : 온실가스 저감 잠재량 분석)

  • Roh, Kosan
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Electrochemical carbon dioxide (CO2) reduction technology, one of the promising solutions for climate change, can convert CO2, a representative greenhouse gas (GHG), into valuable base chemicals using electric energy. In particular, carbon monoxide (CO), among various candidate products, is attracting much attention from both academia and industry because of its high Faraday efficiency, promising economic feasibility, and relatively large market size. Although numerous previous studies have recently analyzed the GHG reduction potential of this technology, the assumptions made and inventory data used are neither consistent nor transparent. In this study, a comparative life cycle assessment was carried out to analyze the potential for reducing GHG emissions in the electrochemical CO production process in a more transparent way. By defining three different system boundaries, the global warming impact was compared with that of a fossil fuel-based CO production process. The results confirmed that the emission factor of electric energy supplied to CO2-electrolyzers should be much lower than that of the current national power generation sector in order to mitigate GHG emissions by replacing conventional CO production with electrochemical CO production. Also, it is important to disclose transparently inventory data of the conventional CO production process for a more reliable analysis of GHG reduction potential.

Thrust Performance and Plasma Acceleration Process of Hall Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.262-270
    • /
    • 2004
  • Basic experiments were carried out using the THT-IV low-power Hall thruster to examine the influences of magnetic field shape and strength, and acceleration channel length on thruster performance and to establish guidelines for design of high-performance Hall thrusters. Thrusts were measured with varying magnetic field and channel structure. Exhaust plasma diagnostic measurement was also made to evaluate plume divergent angles and voltage utilization efficiencies. Ion current spatial profiles were measured with a Faraday cup, and ion energy distribution functions were estimated from data with a retarding potential analyzer. The thruster was stably operated with a highest performance under an optimum acceleration channel length of 20 mm and an optimum magnetic field with a maximum strength of about 150 Gauss near the channel exit and with some shape considering ion acceleration directions. Accordingly, an optimum magnetic field and channel structure is considered to exist under an operational condition, related to inner physical phenomena of plasma production, ion acceleration and exhaust plasma feature. A new Hall thruster was designed with basic research data of the THT-IV thruster. With the thruster with many considerations, long stable operations were achieved. In all experiments at 200-400 V with 1.5-3 mg/s, the thrust and the specific impulse ranged from 15 to 70 mN and from 1100 to 2300 see, respectively, in a low electric power range of 300~1300 W. The thrust efficiency reached 55 %. Hence, a large map of the thruster performance was successfully made. The thermal characteristics were also examined with data of both measured and calculated temperatures in the thruster body. Thermally safe conditions were achieved with all input powers.

  • PDF

Unidirectonal single-mode operation of a Nd:YAG laser by using a planar semimonolithic ring cavity (평면 반일체 고리형 공진기를 이용한 Nd:YAG 레이저의 단방향 단일 모드 발진)

  • 박종락;이해웅;윤태현;정명세
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.311-317
    • /
    • 1999
  • Unidirectional single-mode operation of a diode-pumped Nd:YAG laser with a planar semimonolithic ring cavity has been demostrated at 1064 nm. The semimonolithic cavity consists of a laser active medium placed in a magnetic field, a crystal quartz plate, and an output coupling mirror. They form an optical diode by acting each part as a Faraday rotator, a reciprocal polarization rotator and a partial polarizer, respectively. An eigenpolarization theory for the cavity configuration was presented and losses for the eigenmodes were calculated. A pump-limited single-mode output power of 155 mW and a slope efficiency of 17% were obtained when the laser was pumped by a 1.2 W, 809 nm diode-laser. A laser linewidth of less than 100 kHz is inferred from a beat note frequency spectrum between two identical laser systems and continous single-mode tuning range was more than 2 GHz.

  • PDF

Application of Capacitive Deionization for Desalination of Mining Water (광산수의 탈염을 위한 축전식 탈염기술의 적용)

  • Lee, Dong-Ju;Kang, Moon-Sung;Lee, Sang-Ho;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

Vacuum Web-coater with High Speed Surface Modification Equipment for fabrication of 300 mm wide Flexible Copper Clad Laminate (FCCL) (초고속 대면적 표면 처리 장치가 부착된 300 mm 폭 연성 동박적층 필림 제작용 진공 웹 코터)

  • Choi, H.W.;Park, D.H.;Kim, J.H.;Choi, W.K.;Sohn, Y.J.;Song, B.S.;Cho, J.;Kim, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2007
  • Prototype of $800{\ell}$ vacuum web coater (Vic Mama) consisting of ion source with low energy less than 250 eV for high speed surface modification and 4 magnetron sputter cathodes was designed and constructed. Its performance was evaluated through fabricating the adhesiveless flexible copper clad laminate (FCCL). Pumping speed was monitored in both upper noncoating zone pumped down by 2 turbo pumps with 2000 l/sec pumping speed and lower surface modification and sputter zone vacuumed by turbo pumps with 450 1/sec and 1300 1/sec pumping speed respectively. Ion current density, plasma density, and uniformity of ion beam current were measured using Faraday cup and the distribution of magnetic field and erosion efficiency of sputter target were also investigated. With the irradiation of ion beams on polyimide (Kapton-E, $38{\mu}m$) at different fluences, the change of wetting angle of the deionized water to polyimide surface and those of surface chemical bonding were analyzed by wetting anglometer and x-ray photoelectron spectroscopy. After investigating the deposition rate of Ni-Cr tie layer and Cu layer was investigated with the variations of roll speed and input power to sputter cathode. FCCL fabricated by sputter and electrodeposition method and characterized in terms of the peel strength, thermal and chemical stability.

Effects of Gas Injection on the Recovery of Copper Powder from Industrial Waste Water in Fluidized - Bed Electrolytic Reactors (유동층 전극반응기에서 기체의 유입이 산업폐수로부터 동입자의 회수에 미치는 영향)

  • Song, Pyung-Seob;Son, Sung-Mo;Kang, Yong;Kim, Seung-Jai;Kim, Sang Done
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.485-490
    • /
    • 2005
  • Effects of gas injectino on the copper recovery form industrial waste water in a fluidized-bed electrolytic reactor were investigated. Effects of gas injection on the individual phase holdup and efficiency of copper recovery for given operating variables such as liquid and gas velocity (0.1~0.4 cm/s), current density ($2.0{\sim}3.5A/dm^2$) and amount of fluidized solid particles (1.0~4.0 wt%) were examined. The solid particle, whose diameter and swelling density were 0.5 mm and $1100kg/m^3$, respectively, was made of polystylene and divinyl benzene. It was found that the holdup of gas and solid phases increased, but that of the liquid phase decreased with increasing velocity of gas injected into the reactor. With increasing gas and/or liquid velocity and increasing amount of fluidized particles is not needed, the rate of copper recovery increased to a maximum value of and subsequently decreased. The recovery rate of copper increased almost linearly with increasing current density in accordance with Faraday's law.