• Title/Summary/Keyword: Far-infrared Radiation

Search Result 109, Processing Time 0.026 seconds

The Effects of Elvan on Physical Properties of Cement Mortar (시멘트 모르타르의 물리적 특성에 미치는 맥반석 골재의 영향)

  • Chu, Yong-Sik;Kim, In-Seop;Lee, Jong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.386-391
    • /
    • 2003
  • Ready mixed mortar has been originated from lime industry of Germany and is being used widely in the world at present. In recent years, the studies of mortar with new faculty have been progressed. In this study, we used elvan instead of using sand in order to make cement mortar and investigated characteristics of elvan and mortar that used elvan. The major compositions of elvan were $SiO_2$ and $Al_2O_3$. The crystal phases of elvan were composed of quartz and sillimanite. Elvan had a lot of pore and absorption ratio was 2.09%. The compressive strength of mortar that used elvan satisfied korean industrial standards under 1:3 (mixing ratio) and water retentivity increased according to increase of elvan contents. Far infrared radiation and deodorization ratio increased and thermal conductivity decreased according to increase of elvan contents.

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

Effects of drying methods on quality characteristics and antioxidative effects of Omija (Schizandra chinesis bailon) (건조방법을 달리한 오미자의 품질특성 및 항산화 효과)

  • Lee, Seul;Moon, Hey-Kyung;Lee, Su-Won;Moon, Jae-Nam;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.341-349
    • /
    • 2014
  • The antioxidative effect and quality characteristics of different drying methods (hot air drying, far-infrared radiation drying, vacuum freeze drying) from Schizandra Chinensis Baillon were investigated. The moisture contents and water activity(Aw) contents each 4.46% and 0.38 values of the vacuum freeze drying were lower than those of other samples. A significant not difference in pH values occurred in all samples (p<0.05). The highest content $^{\circ}brix$ vacuum freeze drying was $6.60^{\circ}Brix$ respectively. The turbidity values of the samples were hot air drying 8.24 T%, far infrared radiation drying 0.32 T%, vacuum freeze drying 71.85 T%. The Hunter's L, a and b values of vacuum freeze drying were higher than those of other samples. The order of the free sugar content was glucose>fructose>sucrose, and that of the total free sugar contents were vacuum freeze drying (6.33 g/100 g) > far infrared drying (5.01 g/100 g) > hot air drying (3.73 g/100g). Antioxidant acitivy (DPPH radical scavenging, ABTS radical scavenging) and total phenol, total flavonoid, and total tannin content was highest in vaccum freeze drying than other different drying methods except nitrite scavenging ability.

A Study of Effect on Skin Temperature by Jadeite Powder Containing O/W Emulsion Formulation (원적외선 방사체인 경옥 파우더를 함유하는 스킨케어 화장품 제형이 피부 온도 변화에 미치는 영향에 대한 연구)

  • Kim, Na Ri;Shim, Jongwon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.201-210
    • /
    • 2018
  • In this study, we formulated oil-in-water emulsion composition for skin care products containing jadeite powder which is well known as far-infrared radiating material. Jadeite powder could sustain stable dispersion in aqueous solvents over a month and this helped mixing it high content in oil-in-water emulsion formulation. To identify the effect of jadeite as a far-infrared radiator materials relating to the skin surface temperature change, we applied emulsion formulation containing 2 weight percent jadeite powder onto facial skin surface and blank formulation together and analyzed surface temperature with thermo-vision. Our results showed that the temperature difference between jadeite powder formulation applied region and blank formulation reached to 1.5 ~ 2.0 degree Celsius. We also performed same test with nephrite powder and titanium dioxide powder but only jadeite powder containing formulation showed significant skin temperature change. To elucidate main cause of heat energy transfer, we tested heat radiation, energy dispersive spectrometer analysis and measured far infrared radiance emissivity, diffuse reflectance spectra and water evaporation rate. We found out jadeite powder could retard water evaporation effectively from the skin surface and resist temperature drop down. This is because of the innate chemical composition and surface structure of jadeite, which can bind with water molecules to form hydrogen bonds. It is concluded that we can develop novel skin care products for moisturizing and thermos with jadeite powder.

Preparation and Characterization of the Multi-functionalized Mask Pack (다기능성 마스크 팩의 제조 및 특성평가)

  • Kim, Soo-Yeoun;Bae, Jun-Won;Ha, Jae-Soon;An, Hyo-Jeong;Kweon, Tae-Yeon;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.333-340
    • /
    • 2019
  • This paper was described about the preparation of the multi-functional mask pack and its evaluation. Here, the multi-functional effects means the far-infrared emissivity effect due to polyphosphoric acid, the freckles treatment effect and peeling effects due to inclusion complexes, and the skin temperature decreasing effect due to Lavender-extraction compounds. The the hazardous chemicals, viscosity, and pH were determined blow 0.01%, 280 cP, and pH=6.92 in the prepared multi-functional mask pack solution, respectively. The multi-functional mask pack prepared with dipping method in the solution were showed the value of $0.882{\mu}m$ (Far-infrared emissivity) and $3.40{\times}10^2W/m$ at $37^{\circ}C$ (Far-infrared radiation energy), respectively. After taking multi-functional mask pack, the skin moisturizing rate was indicated 35.5%, and the skin temperature was showed in the range of $24{\sim}26^{\circ}C$. The skin stimulation test for the 30 volunteer was showed very strong stability.

THERMAL PROPERTIES OF SMALL GRAINS WITH FLUCTUATING TEMPERATURE UNDER DIFFUSE INTERSTELLAR RADIATION FIELD

  • Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 1979
  • Temperature history of very small interstellar dust particles is followed under diffuse interstellar radiation. Because of extremely small thermal capacities of these grains with sizes ranging from a few tens to hundred Angstroms in radii, they are to experience strong fluctuations in temperature whenever they are hit by interstellar ultraviolet photons. Fluctuating temperature can inhibit these smaller component of interstellar dust from growing into core-mantle particles of submicron sizes by continuously evaporating atoms and molecules adsorbed on their surface. This is interpreted as a possible physical reason for the bimodal nature in grain size distribution. A brief discussion is also given to the far infrared emission properties of such small grains in diffuse interstellar dust clouds.

  • PDF

AKARI FAR-INFRARED ALL-SKY SURVEY MAPS

  • Doi, Yasuo;Komugi, Shinya;Kawada, Mitsunobu;Takita, Satoshi;Arimatsu, Ko;Ikeda, Norio;Kato, Daisuke;Kitamura, Yoshimi;Nakagawa, Takao;Ootsubo, Takafumi;Morishima, Takahiro;Hattori, Makoto;Tanaka, Masahiro;White, Glenn J.;Etxaluze, Mireya;Shibai, Hiroshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.111-116
    • /
    • 2012
  • Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~ 100 and $200{\mu}m$. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range $50-180{\mu}m$. Covering > 99% of the sky in four photometric bands with four filters centred at $65{\mu}m$, $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of < 10 MJy $sr^{-1}$, with absolute and relative photometric accuracies of < 20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using $90{\mu}m$, $140{\mu}m$, and $160{\mu}m$ data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.

Hay Preparation Technology for Sorghum×Sudangrass Hybrid Using a Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 수수×수단그라스 교잡종의 건초 조제 기술 연구)

  • Jong Geun Kim;Hyun Rae Kim;Won Jin Lee;Young Sang Yu;Yan Fen Li;Li Li Wang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.22-27
    • /
    • 2023
  • This experiment was conducted to confirm the possibility of preparing Sorghum×sudangrass hybrid artificial hay using far-infrared rays in Korea. The machine used in this experiment is a drying device based on far-infrared rays, and is designed to control temperature, air flow rate, far-infrared radiation amount, and air flow speed. The Sorghum×sudangrass hybrids harvested in late September were wilted in the field for one day, and a drying test was performed on them. Conditions for drying were performed by selecting a total of 7 conditions, and each condition induced a change in radiation amount in a single condition (42%) and two steps (4 treatments) and three steps (2 treatments). The speed of the air flow in the device was fixed at 60 m/s, and the run time was changed to 30, 60, and 90 minutes. The average dry matter (DM) content was 82.84%. The DM content was 59.94 and 76.91%, respectively, in drying conditions 1 and 3, which were not suitable for hay. In terms of drying rate, it was significantly higher than 80% in the 5, 6 and 7 treatment, and power consumption was slightly high with an average of 5.7 kw/h. As for the feed value according to each drying condition, the crude protein (CP) content increased as the drying time increased, and there was no significant difference between treatments in ADF, NDF, IVDMD and TDN content. In terms of RFV, treatment 1, which is a single condition, was significantly lower than the complex condition. Through the above results, it was determined that the drying conditions 4 and 5 were the most advantageous when considering the drying speed, power consumption, and quality.

Study on Hay Preparation Technology for Alfalfa Using Stationary Far-Infrared Dryer (정치식 원적외선 건조기를 이용한 알팔파 건초 조제 기술 연구)

  • Kim, Jong Geun;Kim, Hyun Rae;Jeong, Eun Chan;Ahmadi, Farhad;Chang, Tae Kyoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • This experiment was conducted to establish the technology for artificial hay preparation in Korea. Using far-infrared heater, a device that can control temperature, airflow, and far-infrared radiation was produced and conducted on the fourth harvested alfalfa. The drying conditions were carried out by selecting a total of four conditions. For each condition, the radiation rate was set to around 40% (33-42%), and the temperature was set at 58~65℃, and the speed of the airflow was fixed at 60m/s. The overall drying time was set to 30 min in the single and 60 min (30-30 min) and 90 min (30-30-30 min) in the complex condition, and the radiation rate and temperature were changed by time period. In the case of drying condition 1, the final dry matter (DM) content was 46.26%, which did not reach a DM suitable for hay. However, all of the alfalfa corresponding to the remaining drying conditions 2 to 7 showed a DM content of 80% or more, resulting in optimal alfalfa hay production. In power consumption according to the drying conditions, the second drying condition showed the lowest at 4.7 KW, and the remaining drying conditions were as high as 6.5 to 7.1 KW. The crude protein content was found to be high at an average of 25.91% and it showed the highest content in the 5th drying condition (26.93%) and the lowest value in the 6th drying condition (25.16%). The digestibility showed a high value with an average of 84.90%, and there was no significant difference among treatments (p>0.05). Considering the above results, it was judged that drying condition 2 was the most advantageous.

Discovery of a New Mechanism of Dust Destruction in Strong Radiation Fields and Implications

  • Hoang, Thiem;Tram, Le Ngoc;Lee, Hyseung;Ahn, Sang-hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the universe. Observations usually show near- to mid-infrared (NIR-MIR, 1-5~micron) emission excess from H II regions around young massive star clusters (YMSCs) and anomalous dust extinction and polarization towards Type Ia supernova (SNe Ia). The popular explanation for such NIR-MIR excess and unusual dust properties is the predominance of small grains (size a<0.05micron) relative to large grains (a>0.1micron) in the local environment of these strong radiation sources. The question of why small grains are predominant in these environments remains a mystery. Here we report a new mechanism of dust destruction based on centrifugal stress within extremely fast rotating grains spun-up by radiative torques, namely the RAdiative Torque Disruption (RATD) mechanism, which can resolve this question. We find that RATD can destroy large grains located within a distance of ~ 1 pc from a massive star of luminosity L~ 10^4L_sun and a supernova. This increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR-MIR excess and anomalous dust extinction/polarization. We show that small grains produced by RATD can also explain the steep far-UV rise in extinction curves toward starburst and high redshift galaxies, as well as the decrease of the escape fraction of Ly-alpha photons observed from HII regions surrounding YMSCs.

  • PDF