• 제목/요약/키워드: Far-field and noisy environments

검색결과 1건 처리시간 0.016초

Attention-long short term memory 기반의 화자 임베딩과 I-vector를 결합한 원거리 및 잡음 환경에서의 화자 검증 알고리즘 (Speaker verification system combining attention-long short term memory based speaker embedding and I-vector in far-field and noisy environments)

  • 배아라;김우일
    • 한국음향학회지
    • /
    • 제39권2호
    • /
    • pp.137-142
    • /
    • 2020
  • 문장 종속 짧은 발화에서 문장 독립 긴 발화까지 다양한 환경에서 I-vector 특징에 기반을 둔 많은 연구가 수행되었다. 본 논문에서는 원거리 잡음 환경에서 녹음한 데이터에서 Probabilistic Linear Discriminant Analysis(PLDA)를 적용한 I-vector와 주의 집중 기법을 접목한 Long Short Term Memory(LSTM) 기반의 화자 임베딩을 추출하여 결합한 화자 검증 알고리즘을 소개한다. LSTM 모델의 Equal Error Rate(EER)이 15.52 %, Attention-LSTM 모델이 8.46 %로 7.06 % 성능이 향상되었다. 이로써 본 논문에서 제안한 기법이 임베딩을 휴리스틱 하게 정의하여 사용하는 기존 추출방법의 문제점을 해결할 수 있는 것을 확인하였다. PLDA를 적용한 I-vector의 EER이 6.18 %로 결합 전 가장 좋은 성능을 보였다. Attention-LSTM 기반 임베딩과 결합하였을 때 EER이 2.57 %로 기존보다 3.61 % 감소하여 상대적으로 58.41 % 성능이 향상되었다.