• Title/Summary/Keyword: Far-Field Method

Search Result 613, Processing Time 0.032 seconds

A Study on a Standardized Scoring System of Selected Subjects for College Entrance Examination (대학입시에서의 선택과목 점수 표준화에 관한 연구)

  • 박성현;김춘원;박준오
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.3
    • /
    • pp.124-132
    • /
    • 2000
  • A selected subject and a standardized scoring system were newly enforced at college entrance examination from 1999. A selected subject system means each student can select one subject in addition to common subject in the field of mathematical research II and a standardized scoring system means we standardize the score of each field as mean 50 and standard deviation 10 in order to adjust the degree of difficulty between fields. In the field of mathematical research II, there may exist not only difference of the degree of difficulty but also that of general studying ability between groups of selected subjects. So when we standardize score, we have to consider them. So far a linear equating which is a parametric method and an equi-percentile equating which is a nonparametric method have been published, but both of them supposed that the general studying ability between groups was equal. So in this paper an adjusted linear and percentile equating method which seems to be adequate to our entrance examination is suggested and is investigated by computer simulation.

  • PDF

The Field Test of a Mitigation Method from DC Subwaysystem for Underground Pipeline

  • Bae, Jeong-Hyo;Ha, Tae-Hyun;Ha, Yoon-Cheol;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.308-310
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP are described.

Estimation of a mixed-mode cohesive law for an interface crack between dissimilar materials

  • Song, Sung-Il;Kim, Kwang-Soo;Kim, Hyun-Gyu
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.35-51
    • /
    • 2016
  • In this paper, a mixed-mode cohesive law for an interface crack between epoxy and TR (transparent thermoplastic) resin is inversely estimated by the field projection method using numerical solutions and experimentally measured displacements. Displacements in a region far away from the crack tip are measured by digital image correlation technique. An inverse analysis, the field projection method formulated from the interaction J- and M-integrals with numerical auxiliary fields, is carried out to estimate a mixed-mode cohesive law for an interface crack between dissimilar materials. In the present approach, nonlinear deformations and damage near the crack tip are converted into the relationships of tractions and separations on crack surfaces behind the crack tip. The phase angle of mixed-mode singularities of the interface crack is also obtained from measured displacements in this study.

Basic Aspects of Shear Wave Measurement in a Borehole

  • Kitsunezaki, Choro
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.63-77
    • /
    • 2000
  • The dipole method is now popular means for S-wave logging. Essential features of this method are explained, emphasizing basic concept based on approximation of the long-wavelength and the far-field. History of my researches concerned is shortly reviewed as background to reach the idea of this method. Short wavelength behavior of the dipole method is simply reviewed. Methods to reject tube wave noise are commented.

  • PDF

A more efficient numerical evaluation of the green function in finite water depth

  • Xie, Zhitian;Liu, Yujie;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.399-412
    • /
    • 2017
  • The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

A Numerical Analysis Study on the Estimation of the 3D Underwater Radiated Noise Pattern using the Hull Vibration Signals (선체진동신호를 이용한 3차원 수중방사소음 패턴 산출에 대한 수치해석 연구)

  • Yi, Jong-Ju;Kang, Myung-Hwan;Han, Seung-Jin;Bae, Soo-Ryong;Kim, Jae-Ho;Jung, Woo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.770-779
    • /
    • 2014
  • In this study, a numerical estimation method for 3D underwater radiated noise pattern using hull vibration and total acoustic power of the vibrating structure in the far-field is proposed. The underwater radiated noise pattern is known to be predicted using the vibration signals and radiation efficiency of each surface patch. But it is very difficult to know radiation efficiency of each surface patch which is one of important factors to calculate the 3D underwater radiated noise pattern. Instead of using radiation efficiency of each patch, the underwater radiated noise level is modified with the total acoustic power of the vibrating structure. The suggested estimation method for underwater radiated noise pattern is discussed with numerical model.

Semi-active leverage-type isolation system considering minimum structural energy

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Chen, Chi-Jen
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.373-387
    • /
    • 2018
  • Semi-active isolation systems based on leverage-type stiffness control strategies have been widely studied. The main concept behind this type of system is to adjust the stiffness in the isolator to match the fundamental period of the isolated system by using a simple leverage mechanism. Although this system achieves high performance under far-field earthquakes, it is unsuitable for near-fault strong ground motion. To overcome this problem, this study considers the potential energy effect in the control law of the semi-active isolation system. The minimal energy weighting (MEW) between the potential energy and kinetic energy was first optimized through a series of numerical simulations. Two MEW algorithms, namely generic and near-fault MEW control, were then developed to efficiently reduce the structural displacement responses. To demonstrate the performance of the proposed method, a two-degree-of-freedom structure was employed as a benchmark. Numerical results indicate that the dynamic response of the structure can be effectively dampened by the proposed MEW control under both far-field and near-fault earthquakes, whereas the structural responses resulting from conventional control methods may be greater than those for the purely passive control method. Moreover, according to experimental verifications, both the generic and near-fault MEW control modes yielded promising results under impulse-like earthquakes. The practicability of the proposed control algorithm was verified.

Steady Drift Forces on Very Large Offshore Structures Supported by Multiple Floating Bodies in Waves(I) (다수의 부체로 지지된 초대형 해양구조물에 작용하는 정상표류력(I))

  • H.J. Jo;J.S. Goo;S.Y. Hong;C.H. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.123-135
    • /
    • 1995
  • A numerical procedure is described for predicting steady drift forces an multiple three-dimensional bodies of arbitrary shape freely floating in waves. The developed numerical approach is based on combination of a three-dimensional source distribution method, wave interaction theory art the far-field method using momentum theory. Numerical results are compared with the experimental or numerical ones, which are obtained in the literature, of steady drift forces on 33(3 by 11) floating composite vertical cylinders in waves. The results of comparison confirmed the validity of the proposed approach. Finally, the interaction effects are examined in the case of an array of 40(4 by 10) freely floating rectangular bodies in shallow water.

  • PDF