• Title/Summary/Keyword: Fan Flow Rate

Search Result 310, Processing Time 0.025 seconds

Flow Analysis of a Low-Noise Turbo Fan for a Vacuum Cleaner (진공청소기용 저소음 터보팬 내부 유동 특성 해석)

  • Lee Ki-Choon;Kim Chang Jun;Hur Nahmkeon;Jeon Wan Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.631-634
    • /
    • 2002
  • The study of the flow characteristics in two types of turbo-fans for a vacuum cleaner was performed in a previous study. In present study an analysis of a new modified model to reduce fan noise was performed by using CFD. The characteristics of three models calculated for various rotating speeds and flow rates are obtained and compared with available measured data. The results show that the modified model gives stable flow characteristics in operating range than the original model, while both models show similar performance characteristics at the range of high flow rate. Since in the modified model it takes much longer for an impeller blade to pass a diffuser blade than in the original model, and thus the peak pressure at BPF can be relieved, it is anticipated that the modified model gives much lower noise level with similar performance than the original one, which remains to be verified by unsteady computation and measurements.

  • PDF

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

Design Parameter Analysis on the Performance and Noise of Axial Fan (축류형 홴 성능 및 소음에 영향을 미치는 설계변수 분석)

  • 김기황;이승배;주재만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.275-281
    • /
    • 2001
  • While basic input parameters for the performance and noise of axial fan are flow rate, pressure rise, rotating speed, and fan diameter, the geometric parameters of blade are sweep angle, solidity, and camber angle. The sweep angle does not affect fan performance much, but on fan noise significantly. Solidity and camber angle are very critical design parameters acting on the fan performance directly. The solidity and camber angle are closely related, therefore they have to be carefully determined for the low-noise and high-performance fan. In This paper, different design points are selceted and also geometric parameters are deliberately changed for the comparison of fan noise. As a result, at the same performance, the input rotational speed affects radiated noise more significantly than others. When solidity and camber angle are increased more than those by iDesignFan/sup TM/ program, more noise is experienced. The blade sweep method and blade numbers at same solidity are observed to results in different levels of performance and noise.

  • PDF

Study on The Slip Factor Model for Multi-Blades Centrifugal Fan (원심다익송풍기의 미끄럼 계수에 대한 연구)

  • GUO, En-min;KIM, Kwang-Yong;SEO, Seoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF

An Experimental Study on the Effects of Non-uniform Inlet Flows upon Tonal Radiation from an Axial-type Propeller Fan (불균일 난류 유입유동이 프로펠러형 송풍기의 톤소음에 미치는 영향에 대한 실험적 연구)

  • Lee, Seungbae;Kim, Kwang-Yong;Yang, Gwi-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-57
    • /
    • 1998
  • The acoustic signatures from a propeller fan under non-uniform inlet flow conditions were measured to reveal the mechanism for tonal radiation. Experimental studies were carried out by generating non-uniform turbulent flows with circumferential and radial components of harmonic incoming gust deliberately. This paper reports the measured acoustic power exponents and cross-spectra for circumferential and radial disturbances at a specified flow-rate coefficient.

  • PDF

The characteristics of deep slot outside rotor type IM (외측 회전자형 심구형 유도전동기의 특성)

  • 김현수;안병원;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • This paper presents a developed deep slot squirrel cage induction motor fur the fan. Nearly all of the induction motors consist of two parts, rotor and stator, and the position of rotor is generally inside of stator. However, the rotor of the developed induction motor is located outside of stator. It is believed that the outside rotor type induction motor is suitable for the fan due to its large inertia, that is, it is considered that the change of air flow rate resulting from input power or load fluctuation is reduced. It is considered that the results of this paper can be used for the development of the outside rotor type induction motor.

A Study on Reduction of Refirigerant Noise in Household Refrigerator (냉장고 냉매 소음의 저감에 관한 연구)

  • Choi, Seong-Won;Hwang, Won-Gul;Sul, Seoung-Yun;Im, Hyung-Eun;Kim, Sang-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1062-1066
    • /
    • 2004
  • In this study, refrigerant noise at connection of capillary tube and evaporator is investigated. Mechanism of refrigerant noise generation is examined in side-by-side type home refrigerator with two evaporators. It is found that the refrigerant noise is generated during refrigeration room fan-off (R-fan of) for that type refrigerator. The reason is that mass flow rate gets down during R-fan of and flow pattern is changed at outlet of capillary tube. We suggest designs for reduction of refrigerant noise with horizontal double expansion device, muffler, and accumulator. To evaluate those improved designs, sound quality index is used.

  • PDF

Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower (입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석)

  • Nguyen, Minh Phu;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.267-273
    • /
    • 2013
  • In order to provide effective operating conditions for the fan in a wet cooling tower with film fill, a new program to search for the minimum fan power was developed using a model of the optimal total annual cost of the tower based on Merkel's model. In addition, a type of design map for a cooling tower was also developed. The inlet water temperature and heat load were considered as key parameters. The present program was first validated using several typical examples. The results showed that for a given heat load, a three-dimensional graph of the fan power (z-axis), mass flux of air (x-axis, minimum fan power), and inlet water temperature (y-axis, maximum of minimum fan power) showed a saddle configuration. The minimum fan power increased as the heat load increased. The conventionally known fact that the most effective cooling tower operation coincides with a high inlet water temperature and low air flow rate can be replaced by the statement that there exists an optimum mass flux of air corresponding to a minimum fan power for a given inlet water temperature, regardless of the heat load.

A Comparative Study on the Auxiliary Fan Pressure and the Ventilation Efficiency in Large-opening Limestone Mine Airways (대단면 석회석 광산 갱도 내 국부선풍기 승압력 및 통기효과 비교 연구)

  • Park, Dongjun;Kang, Hyeonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Most of the local limestone mines are developed as large-opening underground mines, while mine ventilation is heavily dependent on the natural ventilation and auxiliary systems, rather than the mechanical ventilation system using main fans. The current auxiliary ventilation system with fan and ducting requires optimization since enhanced deployment of diesel equipment demands higher airflow rate and the associated cost is expected to be too excessive for the local mine operators. This paper aims at optimizing the fan capacity for the working site ventilation through comparing the fan pressure in the mine airway and the ventilation efficiency of an axial-flow fan and a propeller fan developed in this study.

Optimization of Parallel Code for Noise Prediction in an Axial Fan Using MPI One-Sided Communication (MPI 일방향통신을 이용한 축류 팬 주위 소음해석 병렬프로그램 최적화)

  • Kwon, Oh-Kyoung;Park, Keuntae;Choi, Haecheon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.3
    • /
    • pp.67-72
    • /
    • 2018
  • Recently, noise reduction in an axial fan producing the small pressure rise and large flow rate, which is one type of turbomachine, is recognized as essential. This study describes the design and optimization techniques of MPI parallel program to simulate the flow-induced noise in the axial fan. In order to simulate the code using 100 million number of grids for flow and 70,000 points for noise sources, we parallelize it using the 2D domain decomposition. However, when it is involved many computing cores, it is getting slower because of MPI communication overhead among nodes, especially for the noise simulation. Thus, it is adopted the one-sided communication to reduce the overhead of MPI communication. Moreover, the allocated memory and communication between cores are optimized, thereby improving 2.97x compared to the original one. Finally, it is achieved 12x and 6x faster using 6,144 and 128 computing cores of KISTI Tachyon2 than using 256 and 16 computing cores for the flow and noise simulations, respectively.