• Title/Summary/Keyword: Falling rate

Search Result 365, Processing Time 0.022 seconds

An Experimental Study on Heat Transfer in a Falling Liquid Film with Surfactant (계면활성제의 농도가 유하액막의 열전달 특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyung-Hee;Kang, Byung-Ha;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.150-155
    • /
    • 2006
  • Falling liquid plays a role in a wide variety of naturally occurring phenomena as well as in the operation of industrial process equipment where heat and mass transfer take place. In such cases, it is required that the falling film should spread widely on the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film affects the flow characteristics of the falling film. In this study the heat transfer characteristics for a falling liquid film has been investigated by an addition of the surface active agents. The falling liquid film was formed on a vertical flat plate. As the mass flow rate of liquid falling film is increased, the wetted area is a little increased while the heat transfer rate as well as heat transfer coefficient is significantly increased. It is also found that both wetted area and heat transfer rate is substantially increased while heat transfer coefficient is a little increased with an increase in the surfactant concentration at a given mass flow rate.

  • PDF

Drying Characteristics of Fluidized Bed Drying of Naked Barley (쌀보리의 유동층 건조 특성에 관한 연구)

  • Kim, Hee-Yun;Cho, Duk-Jae;Chung, Gea-Hwan;Hur, Jong-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.558-564
    • /
    • 1993
  • The drying characteristics of fluidized bed drying with different drying conditions using naked barley were carried out. This fluidized drying mechanism of naked barley was consisted of consecutive two falling rate parts, first falling rate period and second falling rate period without showing constant rate period. The drying rate constant was increased with decreasing charged amount and relative humidity and increasing air temperature and air velocity. Since the drying rate constant expressed by Arrhenius type equation in the falling rate period showed good linearity, the falling rate period was considered as the controlling step. The activation energy of first falling step was 1,900 cal/gmol, while for second falling step the values showed 2,500 cal/gmol.

  • PDF

An Experimental study on heat transfer of a falling liquid film in air channel flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun;Lee, Dae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

Influencing Factors in Drying Characteristics of Fluidized Bed Drying of Husked Barley (겉보리의 유동층 건조특성에 영향을 미치는 인자)

  • Kim, Hee-Yun;Han, Sang-Bae;Kwon, Yong-Kwan;Lee, Kwang-Ho;Jung, Chung-Sung;Ha, Sang-Chul;Kim, Sung-Tae;Song, Seung-Koo;Cho, Jae-Sun;Hur, Jong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.706-713
    • /
    • 2001
  • The influencing factor in drying characteristics of fluidized bed drying with different drying conditions for husked barley were carried out. This fluidized drying mechanism of husked barley was consisted of consecutive two falling rate parts, first falling rate period and second falling rate period without showing constant rate period. The drying rate constant was increased with decreasing charged amount and relative humidity and increasing air temperature and air velocity. Since the drying rate constant expressed by Arrhenius type equation in the falling rate period showed good linearity, the falling rate period was condsidered as the controlling step. The activation energy of first falling step was 1,100 cal/gmol, while for second falling step the values showed 1,600 cal/gmol.

  • PDF

Implementation of a Falls Recognition System Using Acceleration and Angular Velocity Signals (가속도 및 각속도 신호를 이용한 낙상 인지 시스템 구현)

  • Park, Geun-Chul;Jeon, A-Young;Lee, Sang-Hoon;Son, Jung-Man;Kim, Myoung-Chul;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.54-64
    • /
    • 2013
  • In this study, we developed a falling recognition system to transmit SMS data through CDMA communication using a three axises acceleration sensor and a two axises gyro sensor. 5 healthy men were selected into a control group, and the fall recognition system using the three axises acceleration sensor and the two axises gyro sensor was devised to conduct an experiment. The system was attached to the upper of their sternum. According to the experiment protocol, the experiment was carried out 3 times repeatedly divided into 3 specific protocols: falling during gait, falling in stopped state, and falling in everyday life. Data obtained in the falling recognition system and LabVIEW 8.5 were used to decide if falling corresponds to that regulated in an analysis program applying an algorithm proposed in this study. In addition, results from falling recognition were transmitted to designated cellular phone in a SMS (Shot Message Service) form. These research results show that an erroneous detection rate of falling reached 19% in applying an acceleration signal only; 6% in applying an angular velocity; and 2% in applying a proposed algorithm. Such finding suggests that an erroneous detection rate of falling is improved when the proposed algorithm is applied incorporated with acceleration and angular velocity. In this study therefore, we proposed that a falling recognition system implemented in this study can make a contribution to the recognition of falling of the aged or the disabled.

A Study on the Flow Behavior of the Viscoelastic Fluids in the Falling Ball Viscometer (낙구식 점도계를 이용한 점탄성유체의 유동에 관한 연구)

  • 전찬열
    • Journal of the Korean Society of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • The falling ball viscometer has been widely used for measuring the viscosity of the Newtonian fluids because of its simple theory and low cost. The use of the falling ball viscometer for measuring the non-Newtonian viscosity has been of interest to rheologists for some years. The analysis of the experimental results in a falling ball viscometer rest on Stokes law which yields the terminal velocity for a sphere moving through an infinite medium of fluids. An attempt to use the falling ball viscometer to measure the non-Newtonian viscosity in the intermediate shear rate ranEe was sucessfully accomplished by combining the direct experimental obserbations with a simple analytical model for the average shear-stress and shear rate at, the surface of a sphere. In the experiments with highly viscoelastic polyacrylamide solutions the terminal velocity was observed to be dependent on the time interval between the dropping of successive balls. The time-dependent phenomenon was used to determine characteristic diffusion times of the concentrated solutions of polyacrylamide.

  • PDF

Studies on Food Preservation by Controlling Water Activity - II. Dehydration Mechanism and Water Activity of Filefish Muscle - (식품보장(食品保藏)과 수분활성(水分活性)에 관(關)한 연구(硏究) - 제 2 보 : 말쥐치육(肉)의 건조기구(乾操機構)와 수분활성(水分活性) -)

  • Han, Bong-Ho;Choi, Soo-Il;Lee, Jong-Gab;Bae, Tae-Jin;Park, Ho-Gu
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.342-349
    • /
    • 1982
  • Filefish muscle in the form of thin plate $(5{\times}10{\times}0.4\;cm)$ was dried in a forced air dryer at $47.5^{\circ}C$ to study the relation between dehydration mechanism and water activity. The dryer was designed in such a way that the temperature, relative humidity and velocity of air could be controlled. The whole dehydration process of the filefish muscle was divided into two different drying rate periods, constant and falling rate period. During the constant drying rate period, the drying rate was proportional to the square root of air velocity under the conditions of constant temperature and relative humidity of air. The falling rate period was further divided into two different falling drying rate periods, first and second falling rate period. The first falling rate period was an unsaturated surface drying period caused by partial unsaturation of the drying surface with capillary condensed free water diffused from the internal part of the filefish muscle. At this stage he drying rate was mainly dependent on the relative humidity at constant air temperature, and case-hardening phenomenon started at the end of this stage. The moisture content and the water activity at which the second falling rate period started were not constant, because the drying rate of the first falling rate period was strongly dependent on the air humidity. The second falling rate period was again divided into two drying rate periods, former and latter period. The drying rates of both of these periods were independent on the external air humidity. During the former period of the second falling rate period, the dehydration was proceeded by diffusion and vaporization of capillary condensed free water in filefish muscle. The diffusion coefficient of water was $2.89{\times}10^{-10}m^2/sec\;at\;47.5^{\circ}C$. At this stage, the case-herdening continued until the water activity reduced to 0.7. The latter period of the second falling rate period started at the water activity of 0.45. The dedydration was proceeded by diffusion and vaporization of bound water, which adsorbed in multimolecular layers, through the hardened drying surface. The number of molecular layers was 4, and the diffusion coefficient of water during this stage was $4.38{\times}10^{-11}m^2/sec\;at\;47.5^{\circ}C$.

  • PDF

Study on the Heat Transfer Characteristics of Immerged and Falling Flows on Helical Tubes (헬리컬관외 침전 및 적하 열전달 특성에 관한 연구)

  • 황승기;윤상국;김동혁;이승갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.225-232
    • /
    • 2001
  • An experimental study is carried out to investigate the characteristics of heat transfer of outside helical tubes. The main heat exchanger consists of twelve curved columns with each 300mm diameter and the total length of 1.2m copper tube having an outer diameter of 19.05mm with 1.5mm thickness. Water flows down the outside of helical tube, where flow patterns are the vertical film falling flow, immerged flow, and mixed-flow which is the combination of film falling flow and immerged flow. Refrigerant 11 flow the inside of the tube countercurrently. The experimental range of inside flow rate is 1.7~3.2$\ell$/min and outside flow rate is 21-33$\ell$/min. The results are presented as Nusselt number with corresponding Reynolds number for variety of outside and inside flow rates. The heat transfer rates of the mixed flow are 8 to 56% higher than those of film falling flow or immerged flow only. Interpretation of the results is given on the basis of physical reasoning and the correlation equations.

  • PDF

Study on the Effect of Performance Factors on the Evaporator Using Liquid Desiccant Falling Flim for Dehumidification (습식건조제 이용 제습에서의 증발기 성능인자 영향 연구)

  • Park, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.512-520
    • /
    • 1995
  • This study investigates the simultanceous heat and mass transfer between a falling desiccant film and air in cross flow at the interface. The application of this work is the optimization of falling film evaporators for use in potential hybrid air conditioning systems. The specific geometry considered is liquid TEG films falling along the vertical cooled surfaces of a channel with air in cross flow. The equations to describe the coupled heat and mass transfer between a falling desiccant film and air in cross flow for a falling film evaporator have been presented and solved numerically. The effects of important design and operating variables on the evaporator performance predicted by the parametric numerical analysis and suggestions for performance improvements of the evaporator are presented.

  • PDF