• Title/Summary/Keyword: Fall Impact Force

Search Result 20, Processing Time 0.026 seconds

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

A Study on the Effect of Primer Processing Method on the Mechanical Properties of Impact Relief Air Cushion Materials Prepared through Thermal Film Laminating (프라이머 가공 방법이 열융착 필름 라미네이팅으로 제조한 고충격 대응 에어쿠션 소재의 물성에 미치는 영향 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.173-184
    • /
    • 2022
  • In this study, the TPU film was laminated on an aramid fabric or circular knits in order to implement an air cushion material that can respond to high impact forces in case of a fall and is easy to expand. To increase the bonding strength between the fabric layer and the film layer, a primer layer was formed in two ways: one for thermally bonding and laminating PET film and two for coating and aging hot melt type PUR adhesive. The tensile strength of the aramid air cushion was 2.5 times higher than that of the circular knits, but the tensile elongation of the aramid air cushion was very low compared to that of the circular knits. The tear strength of the aramid air cushion was about twice or more superior to that of the circular knits, the primer treatment method was good at A, and the peel strength was excellent at method A. The aramid air cushion was the lightest in weight. Summarizing the above results, it was best to combine the air cushion material with aramid woven fabric and primer treatment method A to cope with the high impact force applied when falling.

Evaluation of Perceived Exertion and Satisfaction in Opening and Closing Tailgates of Sport Utility Vehicles (스포츠 유틸리티 차량의 테일게이트 개폐 불편도와 만족도 평가)

  • Son, Byungchang;Ryu, Taebeum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The difficulties in opening and closing a sport utility vehicle (SUV) tailgate is important aspect of JD (James David) power's Initial Quality Survey (IQS) assessment, and affective quality has a big impact on the the success of thesedays products. The purpose of this study is to evaluate the perceived difficulty and satisfaction of customers by the opening and closing of the tailgate and to grasp the relationship between them and the opening and closing reaction force. The mechanical force required to open and close 42 domestic and overseas SUV tailgates was measured with the help of an auto company. In the experiment, 100 male drivers in their 20s to 50s evaluated perceived difficulty and satisfaction with opening and closing the tailgate. The results of the analysis showed that perceived difficulty and satisfaction were statistically different depending on the vehicle, but did not depend on the personal characteristics of the participants. The perceived difficulty and satisfaction regression model of tailgate opening and closing was developed by mechanical force variables and had a relatively high adjusted $R^2$ ranging from 0.62 to 0.73. The models showed that the the initial close and open force, the difference between initial and maximum close force and the difference between initial and auto-fall angle should be small for the low perceived exertion and high satisfaction. In addition, the correlation analysis between IQS score of tailages and perceived difficulty and satisfaction showed that the IQS scores were more related to the perceived difficulty and satisfaction of closing than those of opening. The results of the study will be helpful to design and test mechanical open and close structure of SUV tailgates.

Parametric Study for Structural Reinforcement Methods of Disposal Container for NPP Decommissioning Radioactive Waste

  • Hyungoo Kang;Hoseog Dho;Jongmin Lim;Yeseul Cho;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.329-345
    • /
    • 2023
  • This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.

Evaluating the Airtightness of Medium- and Low-Intermediate-Level Radioactive Waste Packaging Container through Finite Element Analysis (유한요소 해석을 통한 중·저준위 방사성폐기물 포장용기의 밀폐성 평가)

  • Jeong In Lee;Sang Wook Park;Dong-Yul Kim;Chang Young Choi;Yong Jae Cho;Dae Cheol Ko;Jin Seok Jang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.203-209
    • /
    • 2023
  • The increasing saturation challenges in storage facilities for Low- and Intermediate-Level Radioactive Waste call for a more efficient storage approach. Consequently, we have developed a square-structured container that features a storage capacity approximately 20% greater than that of conventional drum-type containers. Considering the need to contain various radioactive wastes from nuclear power usage securely until they no longer pose a threat to human health or the environment, this study focuses on evaluating the sealing efficacy of the newly designed rectangular container using finite element analysis. Since radioactive waste containers typically do not experience external forces except under special circumstances, our analysis simulated the impact of an external force, assuming a fall scenario. After fastening the bolts, we examined the vertical stress distribution on the container by applying the calculated external force. The analysis confirms the container's stable seal.

A Study on the Trade Effects of FTAs in Busan's Manufacturing Industry (FTA가 부산지역 제조업의 무역에 미치는 영향)

  • Hwang, Young-Soon;Kim, Hong-Youl
    • International Commerce and Information Review
    • /
    • v.14 no.4
    • /
    • pp.517-541
    • /
    • 2012
  • Since the Korea-Chile FTA in 2003, eight FTAs are now in force including Korea-EU and Korea-US FTA. The government anticipate that FTAs increase the GDP of Korea. Government-related research institutes officially reports the positive economic impact in Korea. However, the report does not show that how much Busan economy is affected by the FTAs. For this reason, we study the economic effects of FTAs in Busan. We compare the trade statistics before and after the time each FTA is in force. The resulting figures show that the exports and trades of Busan with the FTA nations increased significantly after the enforcement. For example, the exports to Chile increased by 273% when we compare the three-year average trade. We also construct an econometrics model to estimate the price elasticity. The estimated elasticity of exports for manufactured goods is 1.38 while that of imports is 0.83. Among the manufacturing industry, machinery has the highest price elasticity, 1.8. The average tariff for manufactured goods is 3.9% for FTA nations, while that is 5.8% for Busan. This higher price fall in Busan is offset by the lower price elasticity to make Busan's export increase be greater than Busan's import increase. Busan's export increases by 4.8% while import increases by 3.7%. So, it is expected to be added to the annual trade surplus of approximately $107million.

  • PDF

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.