• Title/Summary/Keyword: Failure wave

Search Result 311, Processing Time 0.022 seconds

Sliding Failure of Vertical Caisson of Composite Breakwater due to Occurrence of Extreme Waves Exceeded Design Conditions (고파랑 출현에 따른 혼성제 직립 케이슨의 활동파괴)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.219-230
    • /
    • 2002
  • The sliding stability of monolithic vertical caisson of composite breakwaters is quantitatively analyzed by using a reliability model, FMA of Level II, in order to study the variation of sliding failure of caisson due to the occurrence of extreme waves exceeded deepwater design wave. The reliability index and several parameters in the wave pressure formula are inter- related to find out the effects of extreme wave exceeded design wave on the sliding failure of vertical monolithic caisson. The sliding failure of caisson seems to be largely increased as the heights and periods of extreme waves exceeded design wave increase, also depends directly on the water depth in front of the composite breakwaters. From the numerical simulations carried out with several kinds of extreme waves exceeded design wave which are assumed to be occurred during the service periods of breakwater, it is found that the effects of the wave height on the sliding failure of caisson may be more dominant than those of wave periods and angles of wave incidence.

  • PDF

A study of stability at the head of a breakwater with directional waves (방향성 파랑의 입사에 따른 이안제 제두부의 안정성에 관한 기초적 연구)

  • 김홍진;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.144-149
    • /
    • 2001
  • The failure at the head section of rubble-mound detached breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes occurring around the head of the rubble-mound detached breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached breakwater. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects. It is clarified that the structure monitored was safely designed for the design wave but the failure was occurred by the reason of breaker waves and scouring processes at the toe 3) It was observed that scouring at the toe developed in the region where steady stream due to vorticity was generated and the spatial variation of scour at the toe of the round head was predominated by incident wave direction.

  • PDF

A study on hydrodynamic characteristics for. construction progress of rubble mound breakwaters (사석제의 건설 공정설계를 위한 수리학적 특성에 관한 연구)

  • Kim, Hong-Jin;Ryu, Cheong-Ro;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.317-322
    • /
    • 2003
  • The Sectional and Spatial failure modes are discussed using the experimental data with long crest wave and multi-directional waves considering the failure modes occurring around the rubble-mound breakwater. The spatial & sectional stability and failure mode around the rubble-mound structures with construction progress can be summarized as follows: 1) The rubble mound structures at basic construction step was occurred serious failures when ${\xi}$ was about 6.5. 2) It was clarified that the failure modes at the round head of detached breakwater are classified as failure by plunging breaking on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached break water. 3) The failure mode was found in the lower wave height than the design wave by the breaker depth effect. 4) The failure on the slope were also developed at the lee side of the round head because diffracted wave propagated into the behind area by grouping effect of multi-directional irregular wave.

  • PDF

Hydraulic stability at the head of rubble mound breakwater around the entrance harbour (항로 주변의 사석경사제 제두부의 수리학적 특성 연구)

  • Kim Hong-Jin;Ryu Cheong-Ro;Kang Yoon-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.303-308
    • /
    • 2004
  • The failure at the head section of rubble mound breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes. It was occurred by the topographical characteristics around the head of rubble mound breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure at the rubble mound breakwaters. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects and topography around structures. It is clarified that the structure was monitored safely designed for the design wave but the failure was occurred by the reason of breaker waves.

  • PDF

Flood Routing of Sequential Failure of Dams by Numerical Model (수치모형을 이용한 순차적 댐 붕괴 모의)

  • Park, Se Jin;Han, Kun Yeun;Choi, Hyun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1797-1807
    • /
    • 2013
  • Dams always have the possibility of failure due to unexpected natural phenomena. In particular, dam failure can cause huge damage including damage for humans and properties when dam downstream regions are densely populated or have important national facilities. Although many studies have been conducted on the analysis of flood waves about single dam failure thus far, studies on the analysis of flood waves about the sequential failure of dams are lacking. Therefore, the purpose of this study was to calculate the peak discharge of sequential failure of dams through flood wave analysis of sequential failure of dams and this analysis techniques to predict flood wave propagation situation in downstream regions. To this end, failure flood wave analysis were conducted for Lawn Lake Dam which is a case of sequential failure of dams among actual failure cases using DAMBRK to test the suitability of the dam failure flood wave analysis model. Based on the results, flood wave analysis of sequential failure of dams were conducted for A dam in Korea assuming a virtual extreme flood to predict flood wave propagation situations and 2-dimensional flood wave analysis were conducted for major flooding points. Then, the 1, 2-dimensional flood wave analysis were compared and analyzed. The results showed goodness-of-fit values exceeding 90% and thus the accuracy of the 1-dimensional sequential failure of dams simulation could be identified. The results of this study are considered to be able to contribute to the provision of basic data for the establishment of disaster prevention measures for rivers related to sequential failure of dams.

Time-dependent reliability analysis of coastal defences subjected to changing environments

  • Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • This paper presents a method for assessing the risk of wave run-up and overtopping of existing coastal defences and for analysing the probability of failure of the structures under future hydraulic conditions. The recent UK climate projections are employed in the investigations of the influence of changing environments on the long-term performance of sea defences. In order to reduce the risk of wave run-up and overtopping caused by rising sea level and to maintain the present-day allowances for wave run-up height and overtopping discharge, the future necessary increase in crest level of existing structures is investigated. Various critical failure mechanisms are considered for reliability analysis, i.e., erosion of crest by wave overtopping, failure of seaside revetment, and internal erosions within earth sea dykes. The time-dependent reliability of sea dykes is analysed to give probability of failure with time. The results for an example earth dyke section show that the necessary increase in crest level is approximately double of sea level rise to maintain the current allowances. The probability of failure for various failure modes of the earth dyke has a significant increase with time under future hydraulic conditions.

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.

Influence of Joint Distribution of Wave Heights and Periods on Reliability Analysis of Wave Run-up (처오름의 신뢰성 해석에 대한 파고_주기결합분포의 영향)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.178-187
    • /
    • 2005
  • A reliability analysis model f3r studying the influence of joint distribution of wave heights and periods on wave un-up is presented in this paper. From the definition of failure mode related to wave run-up, a reliability function may be formulated which can be considered uncertainties of water level. In particular, the reliability analysis model can be directly taken into account statistical properties and distributions of wave periods by considering wave period in the reliability function to be a random variable. Also, variations of wave height distribution conditioned to mean wave periods can be taken into account correctly. By comparison of results of additional reliability analysis using extreme distributions with those resulted from joint distribution of wave height and periods, it is found that probabilities of failure evaluated by the latter is larger than those by the former. Although the freeboard of sloped-breakwater structures can be determined by extreme distribution based on the long-term measurements, it may be necessary to investigate additionally into wave run-up by using the present reliability analysis model formulated to consider joint distribution of a single storm event. In addition, it may be found that the effect of spectral bandwidth parameter on reliability index may be little, but the effect of wave height distribution conditioned to mean wave periods is straightforward. Therefore, it may be confirmed that effects of wave periods on the probability of failure of wave run-up may be taken into account through the conditional distribution of wave heights. Finally, the probabilities of failure with respect to freeboard of sloped-breakwater structures can be estimated by which the rational determination of crest level of sloped-breakwater structures may be possible.

Probabilistic Assessment of Wave Overtopping of Seawall at Busan, Korea (부산 신항 방파제의 월파 확률 평가)

  • Qie, Luwen;Choi, Byung-Ho;Xie, ShiLeng
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.176-183
    • /
    • 2008
  • In this paper, three classical overtopping models: Owen model, Van der Meer & Janssen model and Hedges & Reis model were used to calculate the failure probability of wave overtopping of seawalls. Among of them, the Hedges & Reis model was regarded as a moderate method to analyze the failure probability of wave overtopping of seawalls and the probabilistic assessments of wave overtopping were carried out for a constructing seawall at Busan in Korea by Level II and Level III reliability methods. Considering the cost of construction, an appropriate crest level was proposed for a certain rate of wave overtopping at a lower failure probability.

Influence of water content on dynamic mechanical properties of coal

  • Gu, Helong;Tao, Ming;Wang, Jingxiao;Jiang, Haibo;Li, Qiyue;Wang, Wen
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • Water affects the mechanical properties of coal and stress wave propagation. To comprehensively investigate the effect of water content on the properties of coal, laboratory tests including X-Ray Diffraction (XRD) analysis, P-wave test, S-wave test, static and dynamic compression test with different water contents were conducted. The compressive strength, elastic modulus and failure strain and their mechanism of coal specimen under coupled static-dynamic load with the increased water content were observed. Meanwhile, energy transmission and dissipation characteristics of a stress wave in coal specimens with different water contents under dynamic load and its relation with the failure features, such as fragmentation and fractal dimension, of coal was analyzed. Furthermore, the dynamic interpretation of water infusion to prevent coal burst based on water infusion model of coal seam roadway was provided.