• 제목/요약/키워드: Failure mode simulation

검색결과 168건 처리시간 0.026초

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • 제5권4호
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

Investigation on the failure mechanism of steel-concrete steel composite beam

  • Zou, Guang P.;Xia, Pei X.;Shen, Xin H.;Wang, Peng
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1183-1191
    • /
    • 2016
  • The internal crack propagation, the failure mode and ultimate load bearing capacity of the steel-concrete-steel composite beam under the four-point-bend loading is investigated by the numerical simulation. The results of load - displacement curve and failure mode are in good agreement with experiment. In order to study the failure mechanism, the composite beam has been modeled, which part interface interaction between steel and concrete is considered. The results indicate that there are two failure modes: (a) When the strength of the interface is lower than that of the concrete, failure happens at the interface of steel and concrete; (b) When the strength of the interface is higher than that of the concrete, the failure modes is cohesion failure, i.e., and concrete are stripped because of the shear cracks at concrete edge.

Analytical study of the failure mode and pullout capacity of suction anchors in clay

  • Liu, Haixiao;Wang, Chen;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.79-95
    • /
    • 2013
  • Suction anchors are widely adopted in mooring systems. However there are still challenges in predicting the failure mode and ultimate pullout capacity of the anchor. Previously published methods for predicting the inclined pullout capacity of suction anchors are mainly based on experimental data or the FEM analysis. In the present work, an analytical method that is capable of predicting the failure mode and ultimate pullout capacity of the suction anchor in clay under inclined loading is developed. This method is based on a rational mechanical model for suction anchors and the knowledge of the mechanism that the anchor fails in seabed soils. In order to examine the analytical model, the failure angle and pullout capacity of suction anchors from FEM simulation, numerical solution and laboratory tests in uniform and linear cohesive soils are employed to compare with the theoretical predictions and the agreement is satisfactory. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work proves that the failure mode and pullout capacity of suction anchors can be reasonably determined by the developed analytical method.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

소단형 방파제의 안정성에 대한 신뢰성 해석 (Reliability Analysis of Stability of Berm Breakwaters)

  • 이철응
    • 한국해안해양공학회지
    • /
    • 제19권5호
    • /
    • pp.399-407
    • /
    • 2007
  • 수리학적 파괴모드인 소단의 후퇴거리와 구조적 파괴모드인 사석재의 파손에 대한 발생 가능성을 확률적으로 해석할 수 있는 신뢰성 해석 모형이 개발되었다. 본 연구에서 수립된 신뢰함수를 이용하여 관련 변수들의 불확실성을 고려할 수 있는 AFDA(Approximate Full Distribution Approach)법과 Monte-Carlo 모의법이 개발되었다. 다른 연구 결과들과 상호 비교하여 신뢰성 해석 모형이 올바르게 수립되었음을 확인할 수 있었다. 또한 기존의 연구자들이 수행하지 못한 각 파괴모드와 관련된 확률변수들의 영향이 해석되었다. 마지막으로 동일한 입사파랑 조건에서 발생되는 두 파괴모드의 의존성을 산정하기 위해 다중파괴모드에 대한 해석도 수행하였다. 다중파괴모드 해석 결과에 의하면 허용 후퇴거리 일정 이상의 범위에서는 구조적 파괴모드가 소단형 방파제의 주 파괴모드가 됨을 확인할 수 있었다.

선박 기관시스템 보조기기의 상태기반 고장진단/예측을 위한 고장 모사 데이터베이스 구축 (A Study on the Development of a Failure Simulation Database for Condition Based Maintenance of Marine Engine System Auxiliary Equipment)

  • 김정영;이태현;이송호;이종직;신동민;이원균;김용진
    • 대한조선학회논문집
    • /
    • 제59권4호
    • /
    • pp.200-206
    • /
    • 2022
  • This study is to develop database by an experimental method for the development of condition based maintenance for auxiliary equipment in marine engine systems. Existing ships have been performing regular maintenance, so the actual measurement data development is very incomplete. Therefore, it is best to develop a database on land tests. In this paper, a database developed by an experimental method is presented. First, failure case analysis and reliability analysis were performed to select a failure mode. For the failure simulation test, a test bed for land testing was developed. The failure simulation test was performed based on the failure simulation scenario in which the failure simulation test plan was defined. A 1.5TB failure simulation database has been developed, and it is expected to serve as a basis for ship failure diagnosis and prediction algorithm model development.

지하공간 건설에 따른 굴착전면의 파괴모드 (Heading Failure Modes during Underground Excavation)

  • 권오엽;조재완;신종호;최용기;신용석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.409-416
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to tunnel collapses. A failure mode is one of the critical factors in the conventional methods of stability analysis. Therefore identification of failure modes is essential in securing safe construction in the phase of design analysis, instrumentation planning and implementation of reinforcing measures. In this study failure modes at the tunnel heading in granular soils are investigated using physical model tests and numerical simulation for various tunnel depths and ground surface inclinations. Test results indicated that the effect of depth and inclination of ground surface on a failure mode are significant. It is identified that, with an incase in depth, failure modes become localized in a region close to the tunnel. It is also known that an increase in the inclination of ground surface results in inclined and wide failure modes.

  • PDF

A Study on Rainfall Induced Slope Failures: Implications for Various Steep Slope Inclinations

  • Do, Xuan Khanh;Jung, Kwansue;Lee, Giha;Regmi, Ram Krishna
    • 한국지반환경공학회 논문집
    • /
    • 제17권5호
    • /
    • pp.5-16
    • /
    • 2016
  • A rainfall induced slope failure is a common natural hazard in mountainous areas worldwide. Sudden and rapid failures which have a high possibility of occurrence in a steep slope are always the most dangerous due to their suddenness and high velocities. Based on a series of experiments this study aimed to determine a critical angle which could be considered as an approximate threshold for a sudden failure. The experiments were performed using 0.42 mm mean grain size sand in a 200 cm long, 60 cm wide and 50 cm deep rectangular flume. A numerical model was created by integrating a 2D seepage flow model and a 2D slope stability analysis model to predict the failure surface and the time of occurrence. The results showed that, the failure mode for the entire material will be sudden for slopes greater than $67^{\circ}$; in contrast the failure mode becomes retrogressive. There is no clear link between the degree of saturation and the mode of failure. The simulation results in considering matric suction showed good matching with the results obtained from experiment. A subsequent discarding of the matric suction effect in calculating safety factors will result in a deeper predicted failure surface and an incorrect predicted time of occurrence.

선박 추진용 2행정 저속엔진의 고장모드 데이터 개발 및 LSTM 알고리즘을 활용한 특성인자 신뢰성 검증연구 (The Study of Failure Mode Data Development and Feature Parameter's Reliability Verification Using LSTM Algorithm for 2-Stroke Low Speed Engine for Ship's Propulsion)

  • 박재철;권혁찬;김철환;장화섭
    • 대한조선학회논문집
    • /
    • 제60권2호
    • /
    • pp.95-109
    • /
    • 2023
  • In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

Ballistic behavior of steel sheet subjected to impact and perforation

  • Jankowiak, Tomasz;Rusinek, Alexis;Kpenyigba, K.M.;Pesci, Raphael
    • Steel and Composite Structures
    • /
    • 제16권6호
    • /
    • pp.595-609
    • /
    • 2014
  • The paper is reporting some comparisons between experimental and numerical results in terms of failure mode, failure time and ballistic properties of mild steel sheet. Several projectile shapes have been considered to take into account the stress triaxiality effect on the failure mode during impact, penetration and perforation. The initial and residual velocities as well as the failure time have been measured during the tests to estimate more physical quantities. It has to be noticed that the failure time was defined using a High Speed Camera (HSC). Thanks to it, the impact forces (average and maximum level), were analyzed using numerical simulations together with an analytical description coupled to experimental observations. The key point of the model is the consideration of a shape function to define the pulse loading during perforation.