• Title/Summary/Keyword: Failure load

Search Result 3,037, Processing Time 0.03 seconds

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • In this paper, the effect of normal load on the failure mechanism of echelon joint has been studied using PFC2D. In the first step, calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests. Then, six different models consisting various echelon joint were prepared and tested under two low and high normal loads. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. The simulations demonstrated that failure patterns were mostly influenced by normal loading, while the shear strength was linked to failure mechanism. When ligament angle is less than $90^{\circ}$, the stable crack growth length is increased by increasing the normal loading. In this condition, fish eyes failure pattern occur in rock bridge. With higher ligament angles, the rock bridge was broken under high normal loading. Applying higher normal loading increases the number of fracture sets while dilation angle and mean orientations of fracture sets with respect to ligament direction will be decreased.

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.

Analysis of Horizontal Behavior of a Single Column/Shaft by Horizontal Two-way Pile Load Test (반복수평재하시험을 통한 단일형현장타설말뚝의 거동분석)

  • Jeong, Sang-Seom;Song, Sung-Wook;Kim, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1132-1143
    • /
    • 2008
  • A single Column/Shaft which extended the pile to the column of the bridge with same diameter has better safety and economical profit, but it usually has larger lateral displacement due to lateral loads such as wind, earthquake, wave, etc. A series of horizontal pile load testing were performed to study the lateral behavior of single column/shaft with varying different free lengths and embedded pile lengths. Eight instrumented test piles were cast-in-placed by bonding strain gauges at certain locations on both faces of the pile to measure bending moment, from two-way loadings. Linear variable differential transformers(LVDTs) were installed to measure the lateral pile displacement. Based on this, it is found that the test single column/shaft with different free lengths shows different failure modes. If the test pile has a longer free length, the failure occurs at the near the ground surface, but the shorter one's failure occurs at the below the ground surface.

  • PDF

The study on the Characteristics of Ultimate Bearing Capacity and Major Design Parameters for Single Stone Column (단일 쇄석다짐말뚝의 지지력 특성과 주요 설계 파라미터에 관한 고찰)

  • Chun, Byung-Sik;Kim, Won-Cheul;Jo, Yang-Woon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.552-560
    • /
    • 2004
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand in Korea, stone column seems one of the most adaptable approach for poor ground as a soil improvement method. However, this method was not studied for practical application. In this paper, the most effective design parameters for the being capacity of stone column were studied. The parametric study of major design factors for single stone column was carried out under the bulging and general shear failure condition, respectively. Especially, a test result of single stone column by static load was compared with the bearing capacity values of suggested formulas. The analysis result showed that the ultimate bearing capacity by the formula was much less than the measured value by the static load test. Especially, the result of the parametric study under general shear failure condition showed that the bearing capacity has apparent difference between each suggested formulas with the variation of the major design parameters. Therefore, the result of this study can be a suggestion which is applicable for the field test and the future research.

  • PDF

Evaluation of vierendeel peripheral frame as supporting structural element for prevention of progressive collapse

  • Khaloo, Alireza;Omidi, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.549-556
    • /
    • 2018
  • Progressive building collapse occurs when failure of a structural component leads to the failure and collapse of surrounding members, possibly promoting additional failure. Global system collapse will occur if the damaged system is unable to reach a new static equilibrium configuration. The most common type of primary failure which led to the progressive collapse phenomenon, is the sudden removal of a column by various factors. In this study, a method is proposed to prevent progressive collapse phenomena in structures subjected to removal of a single column. A vierendeel peripheral frame at roof level is used to redistribute the removed column's load on other columns of the structure. For analysis, quasi-static approach is used which considers various load combinations. This method, while economically affordable is easily applicable (also for new structures as well as for existing structures and without causing damage to their architectural requirements). Special emphasis is focused on the evolution of vertical displacements of column removal point. Even though additional stresses and displacements are experienced by removal of a structural load bearing column, the proposed method considerably reduces the displacement at the mentioned point and prevents the collapse of the structural frame.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam

  • Albegmprli, Hasan M.;Gulsan, M. Eren;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 2019
  • This study presents a comprehensive experimental investigation on mostly encountered types of Reinforced Concrete Haunched Beams (RCHBs) where three modes of RCHBs investigated; the diversity of studied beams makes it a pioneer in this topic. The experimental study consists of twenty RCHBs and four prismatic beams. Effects of important parameters including beam type, the inclination angle, flexure and compressive reinforcement, shear reinforcement on mechanical behavior and failure mode of each mode of RCHBs were examined in detail. Furthermore crack propagation at certain load levels were inspected and visualized for each RCHB mode. The results confirm that RCHBs have different behavior in shear as compared to the prismatic beams. At the same time, different mechanical behavior was observed between the modes of RCHBs. Therefore, RCHBs were classified into three modes according to the inclination shape and mode of failure (Modes A, B and C). However, it was observed that there is no significant difference between RCHBs and prismatic beams regarding flexural behavior. Moreover, a new and unified formula was proposed to predict the critical effective depth of all modes of RCHBs that is very useful to predict the critical section for failure.

Seismic performance of exterior R/C beam-column joint under varying axial force

  • Hu, Yanbing;Maeda, Masaki;Suzuki, Yusuke;Jin, Kiwoong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.623-635
    • /
    • 2021
  • Previous studies have suggested the maximum experimental story shear force of beam-column joint frame does not reach its theoretical value due to beam-column joint failure when the column-to-beam moment capacity ratio was close to 1.0. It was also pointed out that under a certain amount of axial force, an axial collapse and a sudden decrease of lateral load-carrying capacity may occur at the joint. Although increasing joint transverse reinforcement could improve the lateral load-carrying capacity and axial load-carrying capacity of beam-column joint frame, the conditions considering varying axial force were still not well investigated. For this purpose, 7 full-scale specimens with no-axial force and 14 half-scale specimens with varying axial force are designed and subjected to static loading tests. Comparing the experimental results of the two types of specimens, it has indicated that introducing the varying axial force leads to a reduction of the required joint transverse reinforcement ratio which can avoid the beam-column joint failure. For specimens with varying axial force, to prevent beam-column joint failure and axial collapse, the lower limit of joint transverse reinforcement ratio is acquired when given a column-to-beam moment capacity ratio.