• Title/Summary/Keyword: Failure in Metal Forming

Search Result 41, Processing Time 0.027 seconds

Tool life in Metal Forming Processes (소성가공에 있어서의 금형수명)

  • 최재찬;김병민
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 1994
  • The service life of tools in metal forming technology is to a large extent limited by wear and fatigue fracture of the active elements. This presents a basic request for tool cost minimization and reduction of extensive machine down time, caused by premature tool failure. Currents developments are dominated by steps to reduce the causes of tool failure. A main problem of forming technology remains the insufficient reliability of tools due to a large and incalculable life time fluctuation. Only a systematic investigation of the failure mechanisms and operational loading of tools can lead to future improvements in tool layout, that is optimization of tool usage.

  • PDF

Experimental Study on the Forming Limit Curve of Aluminum Alloy Sheets using Digital Image Correlation (디지털 이미지 상관관계를 이용한 알루미늄 합금 판재의 성형한계도 평가)

  • Kim, Yongbae;Park, Jungsoo;Song, Junghan
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • Sheet metal formability can be defined as the ability of metal to deform without necking or fracture into desired shape. Every sheet metal can be deformed without failure only up to a certain limit, which is normally known as forming limit curve(FLC). In this paper, the dome stretching tests and tensile tests have been performed to obtain forming limit curve of aluminum alloy. During the experiment, failure strain is measured using digital image correlation(DIC) method. DIC method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. DIC results demonstrated the usefulness and ability to determine a strain.

A Study on the Prediction of Die Wear using Wear Model (마멸모델을 이용한 금형마멸 예측에 관한 연구)

  • Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • During the cold forming, due to high working pressure acting on the die surface, failure mechanics must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. Die wear affects the tolerances of formed parts, metal flow and costs of process etc. The only way to control these failures is to develop methods which allow prediction of die wear and which are suited to be used in the design state in order to optimize the process. In this paper, the wear experiments to obtain the wear coefficients and the upsetting processes was accomplished to observe the wear phenomenon during the cold forming process. The analysis of upsetting processes was accomplished by the rigid-plastic finite element method. The result from the deformation analysis was used to analyse the die wear during the processes and the predicted die wear profiles were compared with the measured die wear profiles.

Two Dimensional Automatic Quadrilateral Mesh Generation for Metal Forming Analysis (소성 가공 공정 해석을 위한 2차원 사각 요소망 자동 생성)

  • Kim, Sang-Eun;Yang, Hyun-Ik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.197-206
    • /
    • 2009
  • In a finite element analysis of the metal forming processes having large plastic deformation, largely distorted elements are unstable and hence they influence upon the result toward negative way so that adaptive remeshing is required to avoid a failure in the numerical computation. Therefore automatic mesh generation and regeneration is very important to avoid a numerical failure in a finite element analysis. In case of generating quadrilateral mesh, the automation is more difficult than that of triangular mesh because of its geometric complexity. However its demand is very high due to the precision of analysis. Thus, in this study, an automatic quadrilateral mesh generation and regeneration method using grid-based approach is developed. The developed method contains decision of grid size to generate initial mesh inside a two dimensional domain, classification of boundary angles and inner boundary nodes to improve element qualities in case of concave domains, and boundary projection to construct the final mesh.

Evaluation of the Formability of Warm Forming Simulation of Magnesium Alloy Sheet Using FLD (마그네슘 합금 판재의 온간 성형 해석에서 FLD를 이용한 성형성 평가)

  • Lee, M.H.;Kim, K.K.;Kim, H.Y.;Oh, S.I.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.501-506
    • /
    • 2008
  • In this study, a forming magnesium alloy circular cup was simulated accounting for heat transfer at elevated temperatures. In order to predict the failure of magnesium alloy sheet during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. For the failure prediction in the simulation accounting for heat transfer, the forming limit diagram for a temperature the same as the temperature of the blank element was used. The result of the simulation showed that the drawn depth increases with the increase of the die-holder temperature, and is in accord with the experimental results above the die-holder temperature of $150^{\circ}C$. The forming limit diagram provided a good guide for the failure prediction of warm forming simulation accounting for heat transfer. In addition, the effect of the tool shoulder radius on the drawn depth at various tool temperatures is verified using the simulation conditions which agreed with the experimental results.

Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD (마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가)

  • Lee, M.H.;Kim, H.K.;Kim, H.K.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming (무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구)

  • Lee S. J.;Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

Optimization of Sheet Metal Forming Process Using Mahalanobis Taguchi System (마하라노비스 다구찌(Mahalanobis Taguchi) 시스템을 이용한 박판 성형 공정의 최적화)

  • Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • Wrinkle, spring-back, and fracture are major defects frequently found in the sheet metal forming process, and the reduction of such defects is difficult as they are affected by uncontrollable factors, such as variations in properties of the incoming material and process parameters. Without any countermeasures against these issues, attempts to reduce defects through optimal design methods often lead to failure. In this research, a new multi-attribute robust design methodology, based on the Mahalanobis Taguchi System (MTS), is presented for reducing the possibilities of wrinkle, spring-back, and fracture. MTS performs experimentation, based on the orthogonal array under various noise conditions, uses the SN ratio of the Mahalanobis distance as a performance metric. The proposed method is illustrated through a robust design of the sheet metal forming process of a cross member of automotive body.

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF