• Title/Summary/Keyword: Failure factor

Search Result 2,027, Processing Time 0.026 seconds

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

A Study on Probability of Failure of Shallow Foundations (얕은 기초의 파괴확률에 관한 연구)

  • Lee, Song;Lim, Byung-Jo;Paik, Young-Shik;Kim, Young-Soo
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.47-58
    • /
    • 1985
  • A new approach is develped to analyze the reliability of the shallow foundation. The measure of the safety of the structhure is expressed In terms of the probability of failure, instead of the conventional factor of safety. Many uncertainties involved in the deterministic stability anaitsis can be reasouably treated by using the probabilistic approach. Both the soil properties and loads are assumed to be random variables. Accordingly, the capacity and demand are considered to be normal, log-normal, and beta variated. Use is made of Error Propagation Method to investigate the probability of failure. And the relationship is investigated between the probability of failure and the central factor of safety. The results are computer programed and several case studies are performed using developed program.

  • PDF

CLINICAL STUDY ON SUCCESS RATE OF TG OSSEOTITE IMPLANT (TG Osseotite 임플란트의 성공률에 대한 임상적 연구)

  • Oh, Sung-Hwan;Min, Seung-Ki;Chae, Young-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • The purpose of this study is to review the prognosis of the TG Osseotite implant(3i Co, USA) placed in partial edentulous area of oral cavity and to suspect the possible causes leading to failure. 124 TG Osseotite implants that had been inserted between 2000 - 2002 were followed up for 2 years(avg : 9.5 months) in function. Medical records, and radiographs were evaluated and analyzed by the over all success rate, gender and age factor, general disease, implant fixture length and diameter, implant site, bone density, and various surgical methods. Chi square test was used statistically. Of the 124 TG Osseotite implants, 9 implants(7.3%) were removed in early phase and 3 implants(2.4%) were in late phase. The cumulative survival rate was 90.2%. The failure of the TG Osseotite implant was closely related with the use of bone graft techniques such as sinus elevation or immediate implantation and not with the age, sex, general disease, implant site, bone density of implanted site. The failure of the TG Osseotite implant was well developed when it was the wide type of implant and it was inserted for single tooth replacement. The developement of peri-implantitis was the most important factor in the failure of the TG Osseotite implant.

Analysis for Effects of Slope Failure Behavior by Finite Element Method (유한요소법에 의한 사면붕괴 거동해석에 미치는 영향분석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.19-28
    • /
    • 1999
  • In this paper, an application of finite element procedure for the analysis of slope failure behavior has been studied. The most widely accepted methods in analyzing the slope stability problems are mostly based on limit equilibrium method. And the finite element method is widely accepted to analyze stress and displacements. This paper shows how the factor of safety calculated in the finite element method can be systematically incorporated into slope stability. In analyzing the slope failure behavior by finite element method, the effects of computational method and the results have been discussed. And several computations of slope stabilities were carried out to compare the finite element analysis results with those obtained by methods of slices based on the limit equilibrium analysis.

  • PDF

Measurement of a Diagnostic Coverage for a Digital Signal Processor Board Using an FMEDA (FMEDA를 활용한 디지털 신호처리기 보드의 진단 유효범위의 측정)

  • Keum, Jong-Yong;Suh, Yong-Suk;Lee, Jun-Koo;Park, Je-Yun
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Good diagnostics improves both the safety and system unavailability of digital safety systems. The measure of a diagnostic capability is called the Coverage Factor. Because the Failure Modes, Effects and Diagnostic Analysis (FMEDA) provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a component, the FMEDA can be used as a useful tool to calculate it. Through performing FMEDA on a digital signal processor (DSP) board used in a digital safety system, it is shown that some components of the DSP board can be replaced or improved to satisfy the required diagnostic coverage. That is, the FMEDA can serve as a useful verification tool to design a diagnostic capability for the DSP board.

  • PDF

Critical Factors Affecting No-dispute Performance: A Case of Ethiopian Public Construction Projects

  • Sinesilassie, Ephrem Girma;Tabish, Syed Zafar Shahid;Jha, Kumar Neeraj
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.4
    • /
    • pp.24-34
    • /
    • 2016
  • Disputes seem to be synonymous with large-scale construction projects in Ethiopia. The purpose of this study is to determine the factors responsible for impacting the performance of Ethiopian public construction projects. To this end, 35 success and failure attributes responsible for impacting the performance of the projects were identified and presented to Ethiopian construction professionals in the form of a structured questionnaire, and responses were collected. The factor analysis conducted on the success and failure attributes influencing no-dispute performance separately resulted in six success factors and five failure factors. Further analysis using stepwise multiple regression indicates that owner competence and interaction among project participants have a positive impact on no-dispute performance. However, conflict among project participants has a negative impact on the no-dispute performance of Ethiopian public construction projects. Although Ethiopia-specific, the results reflect construction management problems common to both developed and developing countries. The findings are expected to help researchers and practitioners gain a better understanding of critical success and failure factors and to help them take proactive measures to avoid disputes in public construction projects.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Case Study of Slope Investigation on the Cretaceous Sedimentary Rocks Using the Geological Cross-Sections

  • Ihm, Myeong-Hyeok;Kim, Woo-Seok;Kwon, Oil
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.463-478
    • /
    • 2021
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The orientation of the slope-face represents a variety of changing characteristics. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the toppling failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, analysis and review of the stereonet projections and the critical equilibrium analysis, all four representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs = 1.5 and Fs = 1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability. In addition, it will be possible to use it as basic data for performance evaluation for slope maintenance.

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

A Comparative Study of FMS Performance Evaluation Modeling Using FACTOR/AIM (FACTOR/AIM을 이용한 통합자동 생산시스템의 성능분석을 위한 비교연구)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.191-202
    • /
    • 1996
  • A variety of approaches on performance evaluation modeling have appeared in the technical literature for flexible manufacturing systems(FMS) which can be evaluated only through computer simulation. This study represents a comparative approach for FMS performance evaluation modeling based on reliability, availability and maintainability, and life cycle cost. The methodology proposed in this research includes the following three-step generative approaches. First, a static model to find the initial system configuration is considered under the assumption that the system availability is given as one (failure and maintenance are not considered), and in second step, a stochastic simulation is proposed to serve as a performance evaluation model for FMS with stochastic failure and repair time. In the last step, we developed a simulation modeling using a simulator, FACTOR/AIM to consider a variety of performance factors and dynamic behavior of FMS. Also the applicability and validity of the proposed approaches has been tested and compared through the results of a sample problem using computer programs and procedures developed in each step.

  • PDF