• 제목/요약/키워드: Failure Mode and Effects Analysis

검색결과 203건 처리시간 0.023초

고속주축의 고장 및 수명평가에 관한 연구 (A Study on the Failure and Life Assessment of High Speed Spindle)

  • 이태홍
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

FMEA에서 계층적 시간 지연 모형에 근거한 위험평가 (Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA)

  • 장현애;이민구;홍성훈;권혁무
    • 품질경영학회지
    • /
    • 제44권2호
    • /
    • pp.373-388
    • /
    • 2016
  • Purpose: This paper suggests a hierarchical time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). In place of the conventional RPN(risk priority number), a more reasonable and objective risk metric is proposed under hierarchical failure cause structure considering time delay between a failure mode and its causes. Methods: The structure of failure modes and their corresponding causes are analyzed together with the time gaps between occurrences of causes and failures. Assuming the severity of a failure depends on the length of the delayed time for corrective action, a severity model is developed. Using the expected severity, a risk priority metric is defined. Results: For linear and quadratic types of severity, nice forms of expected severity are derived and a meaningful metric for risk evaluation is defined. Conclusion: The suggested REM(risk evaluation metric) provides a more reasonable and objective risk measure than the conventional RPN for FMEA.

볼트이음방식의 블록전단파괴에 미치는 영향에 대한 실험적 연구 (An Experimental Study on the Effects of Bolted Connection Type on the Block Shear Failure)

  • 이진옥;박경현;문지호;이학은;임남형
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5566-5571
    • /
    • 2012
  • 블록전단파괴는 인장부재의 한계상태에 해당하는 것으로 강구조물의 인장부재 또는 연결부 설계 시 주의를 요한다. 많은 연구 결과와 설계기준에서는 블록전단파괴에 대한 볼트 이음 방식의 영향을 고려하지 않고 있다. 본 연구에서는 볼트 이음 방식(지압이음과 마찰이음)이 블록전단파괴의 파괴모드와 파괴강도에 미치는 영향을 분석하고자 인장실험을 실시하였다. 실험결과의 분석으로부터 설계기준, 지압이음, 마찰이음에 따른 파괴모드의 차이를 제시하였으며 마찰이음에서 발생되는 마찰력으로 인한 블록전단파괴강도의 변화를 고찰하였다.

Numerical parametric analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips

  • Zhang, Yingying;Song, Xiaoguang;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.195-206
    • /
    • 2017
  • This paper presents the parametric numerical analysis on the ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips. The effects of several factors on failure modes and ultimate bearing capacity of the purlins are studied, including setup of anti-sag bar, purlin type, sheet thickness and connection type et al. A simplified design formula is proposed for predicting the ultimate bearing capacity of purlins. Results show that setting the anti-sag bars can improve the ultimate bearing capacity and change the failure modes of C purlins significantly. The failure modes and ultimate bearing capacity of C purlins are significantly different from those of Z purlins, in the purlin-sheet roof connected by standing seam clips. Setting the anti-sag bars near the lower flange is more favorable for increasing the ultimate bearing capacity of purlins. The ultimate bearing capacity of C purlins increases slightly with sheet thickness increasing from 0.6 mm to 0.8 mm. The ultimate bearing capacity of the purlin-sheet roofs connected by standing seam clips is always higher than those by self-drilling screws. The predictions of the proposed design formulas are relatively in good agreement with those of EN 1993-1-3: 2006, compared with GB 50018-2002.

위험 요인 평가를 위한 FMEA의 일반 RPN 모형과 활용에 관한 연구 (A Study on the Common RPN Model of Failure Mode Evaluation Analysis(FMEA) and its Application for Risk Factor Evaluation)

  • 조성우;이한솔;강주영
    • 품질경영학회지
    • /
    • 제50권1호
    • /
    • pp.125-138
    • /
    • 2022
  • Purpose: Failure Mode and Effect Analysis (FMEA) is a widely utilized technique to measure product reliability by identifying potential failure modes. Even though FMEA techniques have been studied, the form of Risk Priority Number (RPN) used to evaluate risk priority in FMEA is still questionable because of its shortcomings. In this study, we suggest common RPN(cRPN) to resolve shortcomings of the traditional RPN and show the extensibility of cRPN. Methods: We suggest cRPN which is based on Cobb-Douglas production function, and represent the various application on weighting risk factors, weighted RPN in a mathematical way, and show the possibility of statistical approach. We also conduct numerical study to examine the difference of the traditional RPN and cRPN as well as the potential application from the analysis on marginal effects of each risk factor. Results: cRPN successfully integrates previously suggested approaches especially on the relative importance of risk factors and weighting RPN. Moreover, we analyze the effect of corrective actions in terms of econometric analysis using cRPN. Since cRPN is rely on the reliable mathematical model, there would be numerous applications using cRPN such as smart factory based on A.I. techniques. Conclusion: We propose a reliable mathematical model of RPN based on Cobb-Douglas production function. Our suggested model, cRPN, resolves various shortcomings such as consideration of the relative importance, the effect of combinations among risk factors. In addition, by adopting a reliable mathematical model, quantitative approaches are expected to be applied using cRPN. We find that cRPN can be utilized to the field of industry because it is able to be applied without modifying the entire systems or the conventional actions.

Fuzzy-FMEA를 이용한 동적위치제어 시스템의 고장유형 우선순위 도출 (Prioritizing for Failure Modes of Dynamic Positioning System Using Fuzzy-FMEA)

  • 백경동;김성신;천성표;서흥원;이대형
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.174-179
    • /
    • 2015
  • 동적 위치제어 시스템(Dynamic Positioning System)의 위험성과 신뢰성 평가에 FMEA(Failure Mode and Effect Analysis)를 적용하고 있으나, 해양 프로젝트가 가진 특징으로 인해 다음과 같은 한계를 가진다. 1) SCADA(Supervisory Control and Data Acquisition) 시스템을 통해 수집되는 고장 데이터의 일부는 환경의 영향으로 인한 오작동이나 단순한 센서고장으로 인해 생성되는 데이터를 포함하고 있으므로 불완전하고 신뢰할 수 없다. 따라서, FMEA의 세 가지 변수인 심각도(Severity), 발생빈도(Occurrence), 검출빈도(Detection)의 평가는 전문가 지식에 근거한다. 2) 전문가들의 주관적인 판단에 전적으로 의존할 경우 위험 요소들을 정밀하게 평가하기 어렵다. 3) 위험 요소들 사이의 상대적인 중요도는 고려되지 않아 위험우선순위가 명료하게 표현되지 않는다. 4) 서로 다른 고장모드에 대해 동일한 위험 우선순위 값을 가질 경우 상대적인 중요도를 판단하기 어렵다. 이러한 문제점을 극복하고 기존의 FMEA의 효과를 높이기 위해, Fuzzy-FMEA를 제안하고, 선박/해양 프로젝트의 동적 위치제어 시스템의 FMEA 문서에 적용하였다. 본 논문은 DP FMEA, DP FMEA 입증 시험서(DP FMEA Proving Trials)에 나타낸 전문가 지식을 퍼지 모델로 구현하여 FMEA 위험우선순위(RPN; Risk Priority Number)에 위험요소들의 상대적인 중요성을 포함시켰다. 제안한 방법은 해양 프로젝트의 동적 위치제어 시스템의 기계 및 전장 장비에 적용하여 기존의 FMEA와 비교하였다.

태양광 발전 PCS 구성부품에 대한 열적특성 및 고장모드영향분석 (Thermal Characteristic and Failure Modes and Effects Analysis for Components of Photovoltaic PCS)

  • 김두현;김성철;김윤복
    • 한국안전학회지
    • /
    • 제33권4호
    • /
    • pp.1-7
    • /
    • 2018
  • This paper is analyzed for the thermal characteristics(1 year) of the 6 components(DC breaker, DC filter(including capacitor and discharge resistance), IGBT(Insulated gate bipolar mode transistor), AC filter, AC breaker, etc.) of a photovoltaic power generation-based PCS(Power conditioning system) below 20 kW. Among the modules, the discharge resistance included in the DC filter indicated the highest heat at $125^{\circ}C$, and such heat resulting from the discharge resistance had an influence on the IGBT installed on the rear side the board. Therefore, risk priority through risk priority number(RPN) of FMEA(Failure modes and effects analysis) sheet is conducted for classification into top 10 %. According to thermal characteristics and FMEA, it is necessary to pay attention to not only the in-house defects found in the IGBT, but also the conductive heat caused by the discharge resistance. Since it is possible that animal, dust and others can be accumulated within the PCS, it is possible that the heat resulting from the discharge resistance may cause fire. Accordingly, there are two options that can be used: installing a heat sink while designing the discharge resistance, and designing the discharge resistance in a structure capable of avoiding heat conduction through setting a separation distance between discharge resistance and IGBT. This data can be used as the data for conducting a comparative analysis of abnormal signals in the process of developing a safety device for solar electricity-based photovoltaic power generation systems, as the data for examining the fire accidents caused by each module, and as the field data for setting component management priorities.

The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권2호
    • /
    • pp.133-141
    • /
    • 2011
  • A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

Load-Displacement Formulations of Low-rise Unbounded RC Shear Walls with or without Openings

  • Lou, K. Y.;Cheng, F. Y.;Sheu, M. S.;Zhang, X. Z.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.117-130
    • /
    • 2001
  • Investigations of low-rice unbounded reinforced concrete shear walls with or without openings are performed with comparison of analytical and experimental results. Theoretical analysis is based on nonlinear finite element algorithm, which incorporates concrete failure criterion and nonlinear constitutive relationships. Studios focus on the effects of height-to-length ratio of shear walls, opening ratio, horizontal and vertical reinforcement radios, and diagonal reinforcement. Analytical solutions conform well with experimental results. Equations for cracking, yielding and ultimate loads with corresponding lateral displacements are derived by regression using analytical results and experimental data. Also, failure modes of low-rise unbounded shear walls are theoretically investigated. An explanation of change in failure mode is ascertained by comparing analytical results and ACI code equations. Shear-flexural failure can be obtained with additional flexural reinforcement to increase a wall's capacity. This concept leads to a design method of reducing flexural reinforcement in low-rise bounded solid shear wall's. Avoidance of shear failure as well as less reinforcement congestion leer these walls is expected.

  • PDF