• Title/Summary/Keyword: Failure Length

Search Result 1,073, Processing Time 0.028 seconds

Notched Strength and Fracture Criterion of Glass/Epoxy Plain Woven Composites Containing Circular Holes (원공을 가진 Glass/Epoxy 복합재료의 노치강도 및 파괴조건)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1285-1293
    • /
    • 1992
  • The fracture behavior of glass/epoxy plain woven composite plates containing circular holes is experimentally investigated to examine the effects of hole size and specimen width on notched tensile strength. It is shown in this paper that the characteristic length according to the point stress criterion depends on the hole size and specimen width. For predicting the notched tensile strength, a modified failure criterion is developed. An excellent agreement is found between the experimental results and the analytical prediction of modified failure criterion. The notched strength and the characteristic length have an increase and decrease relations. When the unstable fracture occured, the critical crack length equivalent for the damage zone size at the edge of hole is about twice the characteristic length. The critical energy release rate G$_{c}$ is independent of hole size(0.03 .leq. 2R/W .leq. 0.5) under the same specimen width. However G$_{c}$ increases with an increase in specimen width which can be explained by stress relaxation due to the notch insensitivity.ity.

Characteristics on Stabilization Measures for Cutting Slopes of Forest Roads (임도구조 요인에 따른 절토비탈면 안정구조물의 특성)

  • Baek, Seung-An;Ji, Byoung-Yun;Lee, Joon;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.71-75
    • /
    • 2014
  • Forest roads failure is one of the most common problems caused by heavy rainfalls. This study investigated the characteristics on stabilization measures installed for cutting slopes failure of forest road resulted from heavy rainfalls. Three primary factors (slope length, slope gradient, soil type) affecting cutting slope failure were considered and stabilization measures were classified into two types (A type: wooden fence, vegetation sandbag, stone masonry; B type: wire cylinder, gabion, concrete retaining wall) through discriminant analysis based on their capacity of resistance to slope failure. Results showed that A type was mainly installed in such conditions as cut slope <8 m, cut slope gradient $30-40^{\circ}$ and soil type with soil while B type occurred in locational conditions as cut slope length >8 m, cut slope gradient < $30^{\circ}$ and > $30^{\circ}$, and soil type of gravelly soil and rock.

The Evaluation of Failure Factors on Cutting Slopes of Forest Road by Quantification Theory(II) (수량화 II 류에 의한 임도절토사면의 붕괴요인 평가)

  • Cha, Du-Song;Ji, Byoung-Yun
    • Journal of Forest and Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • On the basis of data obtained from forest road collapsed due to a heavy rainfall, this study carried out to evaluate the cutting slope failure factors of forest road by using Quantification theory(II). The results were summarized as follows. The factors on cutting slope failure was ranked in the order of cutting slope length, soil type, aspect, cutting slope gradients and slope gradients. And the slope failure was mainly occurred under such conditions as cutting slope length longer than 8m, soil type with soil, aspect of N, cutting slope gradients steeper than 600 and slope gradients greater than $35{\sim}40^{\circ}$.

  • PDF

Premature Failure Load of Reinforced Concrete Beams with Flexural Strengthened by Steel Plates (강판으로 휨 보강된 철근콘크리트 보의 조기파괴하중 산정)

  • Kim, Haeng-Jun;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.283-292
    • /
    • 2005
  • This paper predicts premature failure load of reinforced concrete beams by epoxy-boned partially steel plates. A parametric study is conducted to estimate premature failure load of beams such as with or without stirrups, unplated length ratio, steel and reinforcement ratio, shear span to depth ratio of reinforcement beam. By results of finite element analysis, it turned out that the unplated length played a dominant role in partially plated beams but reinforcement ratio and shear span to depth ratio effected the premature failure load. The approximate expression with regard to combined design variables is compared with experimental results. It shows closely agreement.

Fault Diagnosis of Drone Using Machine Learning (머신러닝을 이용한 드론의 고장진단에 관한 연구)

  • Park, Soo-Hyun;Do, Jae-Seok;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.

Experimental study of crack propagation of rock-like specimens containing conjugate fractures

  • Sun, Wenbin;Du, Houqian;Zhou, Fei;Shao, Jianli
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • The presence of defects in nature changes the physical parameters of the rock. In this paper, by studying the rock-like specimens with conjugated fractures, the horizontal angle and length are changed, and the physical parameters and failure modes of the specimens under uniaxial compression test are analyzed and compared with the results of simulation analysis. The experimental results show that the peak strength and failure mode of the rock-like specimens are closely related to the horizontal angle. When the horizontal angle is $45^{\circ}$, the maximum value is reached and the tensile failure mode is obtained. The fracture length affects the germination and propagation path of the cracks. It is of great significance to study the failure modes and mechanical properties of conjugated fracture rock-like specimens to guide the support of fractured rock on site.

Development of Failure Pressure Evaluation Model for Local Wall-Thinned Elbows Based on Finite Element Analysis (유한요소해석에 기초한 감육곡관 손상압력 평가 모델 개발)

  • Kim, Jin-Weon;Park, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper provides a failure pressure evaluation model for local wall-thinned elbows. In this study, parametric finite element analyses are performed on the elbows containing local wall-thinning defect at their intrados and extrados, and the failure pressures are obtained from the analysis results by applying a local failure criterion that was validated by real-scale pipe tests. An evaluation model including the effects of thinning depth, length, circumferential angle, thinning location, and elbow geometries on the failure pressure is derived based on the evaluated failure pressures. The proposed model agrees well with the results of finite element analyses and reasonably estimates the dependence of failure pressure on the wall-thinning dimensions and elbow geometries. Also, the comparison with experimental data demonstrates that the proposed evaluation model can accurately predict the failure pressure of local wall-thinned elbows.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Numerical study on mechanical and failure properties of sandstone based on the power-law distribution of pre-crack length

  • Shi, Hao;Song, Lei;Zhang, Houquan;Xue, Keke;Yuan, Guotao;Wang, Zhenshuo;Wang, Guozhu
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.421-434
    • /
    • 2019
  • It is of great significance to study the mechanical properties and failure mechanism of the defected rock for geological engineering. The defected sandstone modeling with power-law distribution of pre-cracks was built in this paper by Particle Flow Code software. Then the mechanical properties of sandstone and the corresponding failure process were meticulously analyzed by changing the power-law index (PLI) and the number of pre-cracks (NPC). The results show that (1) With the increase of the PLI, the proportion of prefabricated long cracks gradually decreases. (2) When the NPC is the same, the uniaxial compressive strength (UCS) of sandstone increases with the PLI; while when the PLI is the same, the UCS decreases with the NPC. (3) The damage model of rock strength is established based on the Mori-Tanaka method, which can be used to better describe the strength evolution of damaged rock. (4) The failure mode of the specimen is closely related to the total length of the pre-crack. As the total length of the pre-crack increases, the failure intensity of the specimen gradually becomes weaker. In addition, for the specimens with the total pre-crack length between 0.2-0.55 m, significant lateral expansion occurred during their failure process. (5) For the specimens with smaller PLI in the pre-peak loading process, the concentration of the force field inside is more serious than that of the specimens with larger PLI.