• Title/Summary/Keyword: Failure Length

Search Result 1,079, Processing Time 0.027 seconds

Failure Pressure Evaluation of Local Wall-Thinned Elbows by Real-scale Burst Tests (실배관 파열실험을 통한 국부감육 곡관 손상압력 평가)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1017-1024
    • /
    • 2007
  • This study performed a series of burst tests at ambient temperature using real-scale elbow specimen containing a local wall-thinning defect at it's intrados or extrados and evaluated failure pressure of locally wall-thinned elbows. In the experiment, a 90-degree 100A, Sch. 80 standard elbow was employed, and various wall-thinning geometries, such as length, depth, and circumferential angle, were considered. From the results of experiment, the dependences of failure pressure of wall-thinned elbows on the defect geometries and locations were investigated. In addition, the reliability of existing models was examined by comparing the tests data with the results predicted from existing failure pressure evaluation models for locally wall-thinned elbow.

Torsional Buckling Behavior of Composite Cylinder (복합재 실린더의 비틀림 좌굴 특성 연구)

  • 이춘우;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.92-95
    • /
    • 2002
  • A nonlinear finite element method is presented to evaluate the torsional buckling moment and failure of composite laminated cylinders. For the progressive failure analysis, the complete unloading method is used based on the maximum stress failure criteria. An arc-length method is incorporated to trace the postbuckling equilibrium path. Present finite element method is verified by the existing experimental and analytical results. The results of the parametric study show that the torsional buckling moments are sensitive to the geometric change, but are not much affected by the lay-up angle. All cylinders tested numerically show the unstable torsional buckling, and therefore the torsional buckling always leads to the catastrophic failure.

  • PDF

The Experimental Study on the Uplift Capacity Test of Circular Anchors in Rock Mass (단일 록 앵커(Rock Anchor) 인발시험에 관한 연구)

  • 이경진;나환선;박동수;김강식;김우범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.3-10
    • /
    • 1999
  • There is an increasing demand for using rock anchors as foundations in many geotechnical engineering structures such as transmission towers, dams, etc. For investigate the behavior and strength of rock anchors, in-situ pull-out tests were carried out. From the tests, various forms of failure of rock anchors were observed. Ultimate capacity of each failure modes of 1) Tendon failure, 2) Interface failure(tendon-grout interface, sheath-grout interface and grout-rock interface), 3) Combined interface failure, was obtained by varying the parameters such as diameter and length of tendon, grout strength, and quality of rock.

  • PDF

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

The Reliability Estimation of Buried Pipeline Using the FAD and FORM (파손평가선도(FAD)와 FORM을 이용한 매설배관의 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.20-28
    • /
    • 2005
  • In this paper, the methodology for the reliability estimation of buried pipeline with longitudinal gouges and dent is presented and the limit state of buried pipeline is formulated by failure assessment diagram(FAD). The reliability of buried pipeline with defects has been estimated by using a theory of failure probability. The failure probability is calculated by using the FORM(first order reliability method) and Monte Carlo simulation. The results out of two procedures have been compared each other. It is found that the FORM and Monte Carlo simulation give similar results for varying boundary conditions and various random variables. Furthermore, it is also recognized that the failure probability increases with increasing of dent depth, gouge depth, gouge length, operating pressure, pipe outside radius and decreasing the wall thickness. And it is found that the analysis by using the failure assessment diagram gives highly conservative results than those by using the theory of failure probability.

Clinical Study on Acute Renal Failure after Valve Replacement Surgery (인공판막치환술후 발생한 급성신부전에 대한 임상적 고찰)

  • 신현종
    • Journal of Chest Surgery
    • /
    • v.27 no.2
    • /
    • pp.122-127
    • /
    • 1994
  • A retrospective study of 737 consecutive patients surviving the first 24 hours who underwent valve replacement surgery from July 1980 to June 1993 was undertaken to determine the prevalence, variables that could be used to predict outcome and results of therapy for postoperative acute renal failure[ARF]. Twenty-one patients[2.8 %] developed acute renal failure. Positive risk factors noted in the development of postoperative renal failure included age, New York Heart Association class III & IV, endocarditis and elevated preoperative concentration of serum creatinine. The duration of cardiopulmonary bypass, aortic cross-clamping and the total duration of the operation also closely correlated with the incidence of ARF. The mortality rate for established ARF was 38.1% and ARF was associated with a significant increase in the length of hospitalization, ventilator support and intensive care unit stay. The incidence and mortality rate of oliguric renal failure was 38.1% and 85.7%. The highest mortality rate was associated with two or more postoperative complications and serum creatinine value exceeded 5 mg/dl. We concluded that therapy should be aimed at prevention of oliguric renal failure, or at least its conversion to nonoliguric renal failure, and early institution of renal replacement therapy with intensive support probably gives the best chance for survival.

  • PDF

Time-dependent bond transfer length under pure tension in one way slabs

  • Vakhshouri, Behnam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.301-312
    • /
    • 2016
  • In a concrete member under pure tension, the stress in concrete is uniformly distributed over the whole concrete section. It is supposed that a local bond failure occurs at each crack, and there is a relative slip between steel and surrounding concrete. The compatibility of deformation between the concrete and reinforcement is thus not maintained. The bond transfer length is a length of reinforcement adjacent to the crack where the compatibility of strain between the steel and concrete is not maintained because of partially bond breakdown and slip. It is an empirical measure of the bond characteristics of the reinforcement, incorporating bar diameter and surface characteristics such as texture. Based on results from a series of previously conducted long-term tests on eight restrained reinforced concrete slab specimens and material properties including creep and shrinkage of two concrete batches, the ratio of final bond transfer length after all shrinkage cracking, to THE initial bond transfer length is presented.

Effects of number and angle of T Shape non persistent cracks on the failure behavior of samples under UCS test

  • Sarfarazi, V.;Asgari, K.;Maroof, S.;Fattahi, Sh
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.31-45
    • /
    • 2022
  • Experimental and numerical simulation were used to investigate the effects of angle and number of T shape non-persistent crack on the shear behaviour of crack's bridge area under uniaxial compressive test. concrete samples with dimension of 150 mm×150 mm×40 mm were prepared. Within the specimen, T shape non-persistent notches were provided. 16 different configuration systems were prepared for T shape non-persistent crack based on two and three cracks. In these configurations, the length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 30°, 60° and 90°. Similar to cracks configuration systems in the experimental tests, 28 models with different T shape non-persistent crack angle were prepared in numerical model. The length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 15°, 30°, 45°, 60°, 75° and 90°. Tensile strength of concrete was 1 MPa. The axial load was applied to the model. Displacement loading rate was controlled to 0.005 mm/s. Results indicated that the failure process was significantly controled by the T shape non-persistent crack angle and crack number. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the crack number and crack angle. The strength of samples decreased by increasing the crack number. In addition, the failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods (PFC2D).

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.

A State-of-the-Art Review on Debonding Failures of FRP Laminates Externally Adhered to Concrete

  • Kang, Thomas H.K.;Howell, Joe;Kim, Sang-Hee;Lee, Dong-Joo
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • There is significant concern in the engineering community regarding the safety and effectiveness of fiber-reinforced polymer (FRP) strengthening of RC structures because of the potential for brittle debonding failures. In this paper, previous research programs conducted by other researchers were reviewed in terms of the debonding failure of FRP laminates externally attached to concrete. This review article also discusses the influences on bond strength and failure modes as well as the existing experimental research and developed equations. Based on the review, several important conclusions were re-emphasized, including the finding that the bond transfer strength is proportional to the concrete compressive strength; that there is a certain bond development length that has to be exceeded; and that thinner adhesive layers in fact lower the chances of a concrete-adhesive interface failure. It is also found that there exist uncertainty and inaccuracy in the available models when compared with the experimental data and inconsistency among the models. This demonstrates the need for continuing research and compilation of data on the topic of FRP's bond strength.