• 제목/요약/키워드: Failure Criterion

검색결과 694건 처리시간 0.029초

시추공벽 파쇄 모의 시험 및 현장 응력과의 관계 연구 (Experimental Simulations of Borehole Breakouts and Their Relationship to In Situ Stress Magnitudes)

  • 송인선
    • 지질공학
    • /
    • 제10권3호
    • /
    • pp.225-236
    • /
    • 2000
  • 웨스터리 화강암과 베리아 사암 시료에 지하 심부에 상당하는 현장 응력을 가한 후 시추를 함으로써 시추공벽 파쇄를 발생시켰으며, 이를 통하여 현장 응력의 크기를 추정할 수 있는지 연구하였다. 실험은 삼축압축 및 시추공벽 파쇄시험 등 두 단계로 나뉘어 수행되었다. 삼축압축 시험 결과로부터 모아-쿨롱, 나다이, 그리고 모기파괴 기준을 구하였다. 각 파괴 기준을 공벽 파쇄 경계 지점에서의 응력 상태와 비교한 결과, 모아-쿨공 파괴 기준은 공벽에서의 파쇄 응력과는 전혀 일치하지 않았다. 반면, 베리아 사암에서는 나다이기준, 그리고 웨스터리 화강암에서는 모기파괴 기준과 같은 다축(혹은 진 삼축) 파괴 기준이 공벽 주변에서 파쇄를 일으키는 응력 상태와 잘 일치하였다. 적당한 파괴 기준 및 시추공벽 파쇄 크기를 이용하여 두 개의 현장 수평 주응력 중 하나가 알려졌을 경우 다른 하나를 비교적 신뢰할 수 있는 정도로 추정할 수 있다는 것이 밝혀졌다.

  • PDF

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석 (Strength Estimation of Composite Joints Based on Progressive Failure Analysis)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가 (Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake)

  • 문상기
    • 자원환경지질
    • /
    • 제33권2호
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading

  • Gang, HanGul;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2017
  • This paper focuses on the mesh-size dependency in numerical simulations of reinforced concrete (RC) structures subjected to blast loading. A tensile failure criterion that can minimize the mesh-dependency of simulation results is introduced based on the fracture energy theory. In addition, conventional plasticity based damage models for concrete such as the CSC model and the HJC model, which are widely used for blast analyses of concrete structures, are compared with the orthotropic model that adopts the introduced tensile failure criterion in blast tests to verify the proposed criterion. The numerical predictions of the time-displacement relations at the mid-span of RC beams subjected to blast loading are compared with experimental results. The analytical results show that the numerical error according to the change in the finite element mesh size is substantially reduced and the accuracy of the numerical results is improved by applying a unique failure strain value determined by the proposed criterion.

Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane

  • Mohammadi, M.;Tavakoli, H.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.115-124
    • /
    • 2015
  • Determination of mobilized shear strength parameters (that identify stresses on the failure plane) is required for analyzing the stability by limit equilibrium method. Generalized Hoek-Brown (GHB) and Mohr-Coulomb (MC) failure criteria are usually used for obtaining stresses on the plane of failure. In the present paper, the applicability of these criteria for determining the stresses on failure plane is investigated. The comparison is based on stresses on the real failure plane which are obtained from the Mohr stress circle. To do so, 18 sets of data (consist of principal stresses and angle of failure plane) presented in the literature are used. In addition, the values account for (VAF) and the root mean square error (RMSE) indices were calculated to check the determination performance of the obtained results. Values of VAF and RMSE for the normal stresses on the failure plane evaluated from MC are 49% and 31.5 where for GHB are 55% and 30.5, respectively. Also, for the shear stresses on failure plane, they are 74% and 36 for MC, 76% and 34.5 for GHB. Results show that the obtained stresses and angles of failure plane for each criterion differ from real ones, but GHB results are closer to the empirical results. Also, it is inferred that results are affected by the failure envelope not real failure plane. Therefore, obtained shear strength parameters are not mobilized. Finally, a multivariable regressed relation is presented for determining the stresses on the failure plane.

횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식 (Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock)

  • 이연규;최병희
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.174-180
    • /
    • 2011
  • 횡등방성 암석의 강도해석에 활용할 목적으로 이방성 Mohr-Coulomb 파괴조건식을 제안하였다. 제안된 파괴조건식에서는 Pietruszczak & Mroz(2001)가 제안한 조직텐서를 도입하여 마찰각과 점착력을 조직텐서의 스칼라함수로 정의하였다. 두 강도정수의 이방성은 주응력좌표계와 재료 주좌표계의 상대적 회전을 바탕으로 계산된다. 이방성 파괴조건식을 최대로 하는 임계면을 찾는 방법이 Lagrange 승수법에 기초하여 제안되었다. 수치삼축압축 시험을 실시한 후 삼축압축강도와 파괴면 경사각 분석을 통하여 제안된 이방성 파괴함수의 성능을 검증하였다.

An ESED method for investigating seismic behavior of single-layer spherical reticulated shells

  • Zhang, Ming;Zhou, Guangchun;Huang, Yanxia;Zhi, Xudong;Zhang, De-Yi
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.455-464
    • /
    • 2017
  • This paper develops a new method for analyzing the structural seismic behavior of single-layer reticulated shells based on exponential strain energy density (ESED). The ESED method reveals a characteristic point from a relationship between ESED sum and peak seismic acceleration. Then, the characteristic point leads to an updated concept of structural failure and an ESED-based criterion for predicting structural failure load. Subsequently, the ESED-based criterion and the characteristic point are verified through numerical analysis of typical single-layer reticulated shells with different configurations and a shaking table test of the scale shell model. Finally, discussions further verify the rationality and application of the ESED-based criterion. The ESED method might open a new way of structural analysis and the ESED-based criterion might indicate a prospect for a unified criterion for predicting seismic failure loads of various structures.

접착이음의 파괴 기준 설정을 위한 연구 (Establishment for Failure Criterion of Adhesively Bonded Joint)

  • 이강용;공병석
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.183-190
    • /
    • 2000
  • The objective of this work is to develop a criterion for predicting the failure strength of the joints bonded by ductile adhesives. To obtain a criterion, first, fracture tests were carried out for T-peel joint and Single-lap joint with widely differing joints geometries. Then using the fracture loads obtained at tests, the finite element analysis were performed, in which the stresses in the adhesive bonds were calculated in great detail. After examining four epoxy adhesives, it is concluded that the fracture of adhesively bonded joint occurs when the maximum of the ratio of the mean to effective stresses exceeds a constant value which can be determined from analysis and test for each adhesive.

  • PDF

탄소/에폭시 복합재료 구조물의 기계적 결합에 대한 강도 및 파손모드 예측 (Strength and Failure Mode Prediction of Mechanically Fastened Carbon/Epoxy Joints)

  • 김기범;이미나;공창덕
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.111-121
    • /
    • 1997
  • 본 연구에서는 탄소/에폭시 복합재료의 기계적 결합부위의 결합강도 예측을 위한 구조해석과 실험을 수행하였다. 복합재료 구조물의 Joint설계에 있어 베어링 파괴는 대단히 중요한 파괴형태 중하나이다. 그래서 본 연구에서는 베어링 파괴를 해석적으로 예측하고 실험적으로 확인하였다. 순수인장 파괴(Net Tension Failure)와 베어링 파괴(Bearing Failure) 실험을 위해서 각각 두 가지 형상의 시편을 선택하였다. 기계적 결합강도 예측에 사용된 방법은 특성길이(Characteristic Length)법과 연관시킨 Yamada-Sun 파괴기준(Failure Criterion)과 Tsai-Hill 최대일 이론이다. 그리고 인장특성길이와 압축특성길이는 실험을 통하여 얻어지며, 특히 압축특성길이 결정은 최근에 착안된 베어링파괴 실험으로부터 결정하였다. 위와 같은 예측 방법을 준등방성(Quasi-Isotropic) Carbon/Epoxy HT245/RS3232에 적용하였다. 연구결과, 이론적인 복합재료 파괴예측이 실험결과와 잘 일치함을 확인할 수 있었다.

  • PDF