• 제목/요약/키워드: Failure Code

검색결과 640건 처리시간 0.026초

강우침투를 고려한 철도 연변사면의 안정성 해석 (Numerical Analysis Considering Rainfall Infiltration For the Railroad adjacent Slopes)

  • 김민석;사공명;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.687-696
    • /
    • 2006
  • Slope failure triggered by rainfall produces severe effects on the serviceability and stability of railway. Therefore slope stability problem is one of the major concerns on the operation of railway. In this study we collected rainfall data when and where slope failures were observed. The collected data show that the range of cumulative rainfall is from 150 to 500mm and the rainfall duration is about 3 to 24 hours. By using the collected rainfall information, slope stability analysis considering infiltration was carried. The analyses employs multiple sliding surfaces to find the minimal factor of safety in the infinite slope condition. This approach show more reasonable results than the results from analysis following the design code which assumes that groundwater level and the slope surface are equal.

  • PDF

응력집중부를 갖는 표면균열재의 균열길이 변화에 따른 피로거동 (The Fatigue Behavior by Variety of Crack Length of Surface Cracked Plate with Stress Concentration Part)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.83-91
    • /
    • 1995
  • Surface defects in structural members are apt to be origins of fatigue cracks growth, which may cause serious failure of whole structures. Most structure has a part where stress concentrates such as welded joints, corner parts, etc. And then, analysis on crack growth and penetration from these defects, therefore, is one of the most important subjects for the reliability of LBB design. The present paper has performed an experimental and analysis on the fatigue crack propagation by variety in crack length of surface cracked plate with stress concentration part. The crack growth behavior can be explained quantitatively by using Newman-Raju equation and the stress partitioning method proposed by ASME B&P Code Sec. XI. The stress concentration factor $K_t$ has affected on the crack growth. The crack growth after penetration depends upon the initial front side crack length.

  • PDF

국내 가압경수형 원전에 대한 가압열충격 재평가 연구 (Pressurized Thermal Shock Re-Evaluation Studies for Korean PWR Plant)

  • 장성규;김현수;진태은;장창희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.16-21
    • /
    • 2001
  • The PTS reference temperature of reactor pressure vessel for one of the Korean NPPs has been predicted to exceed the screening criteria before it reaches it's design life. To cope with this issue, a plant-specific PTS analysis had been performed in accordance with the Regulatory Guide 1.154 in 1999. As a result of that analysis, it was found that current methodology of RG. 1.154 was very conservative. The objective of this study is to examine the effects of changing various input parameters and to determine the amount of conservatism of the current PTS analysis method. To do this, based on the past PTS analysis experience, parametric study were performed for various models using modified VISA-II code. This paper discusses the analysis results and recommendations to reduce the conservatism of current analysis method.

  • PDF

휴대용 단말기의 낙하충격해석 및 실험적 검증 (Drop/Impact Simulation and Experimental Verification of Mobile Phone)

  • 김진곤;이준영;이신영
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.695-702
    • /
    • 2001
  • In this paper, the drop/impact simulation for a mobile phone has been carried out with the explicit code LS-DYNA and its validation has been experimentally verified. The small size of this kind of electronics products makes it time-consuming, and difficult to conduct drop tests to detect the failure mechanism and identify their drop behaviors. Strict drop/impact performance criteria of such hand held electronic products as mobile phones play an important role in their design because these products must withstand both normal and unexpected shock. Usually, the product durability on drop impact depends on designers experience. The present reliable methodology of drop/impact simulation provides an efficient and powerful vehicle to improve the design quality and reduce the design period.

평기어의 정밀 냉간단조 금형설계 (Die design on the Precision Cold Forging of Spur Gear)

  • 권혁홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.242-247
    • /
    • 1998
  • The conventional closed-die forging processes had been applied to forging of the spur gears. But this type process requires high pressure. The commercial finite element analysis code ANSYS for the stress and elastic deformation of non-axisymmetric die was adopted in this study. In the non-axisymmetric die such as gear forging, maximum stresses were imposed on the tip of the gear tooth. When the stress exceeds yield strength of insert die, many approaches were attemped to prevent the die failure. Good shaped products are forged successfully. This type process could by used as an advanced technique to replace conventional hobbing process of gear.

  • PDF

분포하중을 받는 목재 적층복합재 빔의 볼트 체결 최적화 설계 (Design Optimization of Bolted Connection with Wood Laminated Composite Beams Subjected to Distributed Loads)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.292-298
    • /
    • 2017
  • Numerical analysis for various design parameters should be preceded by optimal design of composite materials. Numerous studies have been conducted on the bolting of interconnecting beams. In this study, the response surface method was applied to optimize the design of bolted joints connected by laminated wood composite beams. The response surface was created by combining the FEA code for composite analysis and the algorithm for forming the response surface. Optimization on this response surface was performed with a genetic algorithm to derive the results. The determination of the optimum bolt-hole position for the connection of composite beams is an optimization problem. Tsai-Wu composite failure index, maximum deflection, and simple von Mises stress are set as the objective functions. It has been proved that the design results of the optimized bolt-hole are superior to the design performance of the existing conventional bolt-hole position.

프리스트레스 콘크리트 원전 격납건물의 비선형 유한요소해석에 관한 연구 (A Study on the Nonlinear Finite Element Analysis of Prestressed Concrete Containment Vessel)

  • 이홍표;전영선;송영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.639-646
    • /
    • 2006
  • A nonlinear finite element analysis is carried out to predict the ultimate internal pressure and failure mechanism of a 1/4 scale prestressed concrete containment vessel(PCCV) model using the commercial code ABAQUS. Therefore, this paper is mainly focused to compare the influence of concrete material model, tension stiffening parameter, uplift phenomenon and basemat. From the analysis results, nonlinear behavior of the PCCV showed a substantially different aspects in accordance with the nonlinear material model for the concrete as well as tension stiffening parameter. The boundary conditions beneath the basemat are considered to be a fixed condition and a nonlinear spring element to compare the influence of the uplift. The finite element analysis is considered with and without a basemat to find out the influence of the basemant itself. From the analysis results, the nonlinear behavior of the PCCV is entirely similar for the two cases.

  • PDF

Evaluation of thermal striping damage for a tee-junction of LMR secondary piping”

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo;Yoon, Sam-Son
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.837-843
    • /
    • 1998
  • This paper presents the thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the secondary piping of LMFR using Green's function method and standard FEM. The thermohydraulic loading conditions used in the present analysis are simplified sinusoidal thermal loads and the random type data thermal load. The thermomechainical fatigue damage was evaluated according to ASME code subsectionNH. The analysis results of fatigue for the sinusoidal and random load cases show that fatigue failure would occur at a geometrically discontinuous location during 90,000 hours of operation The fracture mechanics analysis showed that the crack would be initiated at an early stage of the operation. The fatigue crack was evaluated to propagate up to 5 ㎜ along the thickness direction during the first 944 and 1083 hours of operation for the sinusoidal and the random loading cases, respectively.

  • PDF

레이저 용접 차체의 유한 요소 모델링과 성형해석 (A Finite Element Modeling and Analyses of Laser Tailor-Welded Automotive Body)

  • 김헌영;최광용;김관회;조원석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.31-36
    • /
    • 1997
  • Various methods of finite element modeling for welded part are examined and the stamping simulation of automotive body is presented by using the explicit finite element code PAM-STAMPTM. The process of stamping simulation is suggested step by step, and then the gravity, binder wrap, forming, trimming and springback of front door inner are analyzed. It shows good agreements with real product in the aspects of deformed shape and failure area. The door inner with laser-tailor welded blank is simulated, in which deformed shape, movement of welde line and formability are predicted.

  • PDF

강섬유를 혼입한 고강도 콘크리트 보의 전단강도 (Shear Strength of High Strength Concrete Beams with Steel Fibrous)

  • 곽계환;박종건;정태영
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2000
  • The purpose of this paper is to study on the shear strength of high strength concrete beams with steel fibrous. In general, the shear strength of reinforced concrete beams is affected by the compressive strengths of concrete( c), the shear span-depth ratio(a/d), the longitudinal steel ratio($\rho$ $\omega$), and shear reinforcement. An experimental investigation of the shear strength of high strength concrete beams with steel fibrous was conducted. In each series the shear span-depth ratio(a/d) was held constant at 1.5, 2.8, or 3.6, while concrete strengths were varied from 320 to 520, to 800kgf/$\textrm{cm}^2$. To verify the proposed equations the experimental results were compared with those from other researches such as equation of ACI code 318-95 or equation of Zsutty. To deduce equation for shear strength from experimental data carried out MINITAP program. According to the experimental results, the addition of steel fibrous has increased the deflection and strain at failure load, improving the brittleness of the high strength concrete.