• Title/Summary/Keyword: Failure, Reliability Analysis

Search Result 1,455, Processing Time 0.027 seconds

Condition Assessment Models and Fuzzy Reliability Analysis of Structural Systems (구조시스템의 퍼지신뢰성해석 및 상태평가모델)

  • 이증빈;손용우;박주원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.61-68
    • /
    • 1998
  • It has become important to evaluate the qualitive reliability and condition assessment of existing structural systems in order to establish a rational program for repair and maintenance. Since most of if existing structural system may suffer from defect corrosion and damage, it is necessary to account for their effects in fuzzy reliability analysis, In this paper, an attempt is made to develope a reliability analysis for damaged structural systems using failure possibility theory. Damage state is specified in terms of linguistic valiables using natural language information and numerical information, which are defined by fuzzy sets. Using a subjective condition index of failure possibility and information of the damage state is introduced into the calculation of failure probability. The subjective condition index of quantitative and qualitative analysis method is newly proposed based on the fuzzy set operations, namely logical product, drastic product, logical sum and drastic sum

  • PDF

Application of Importance Sampling to Reliability Analysis of Caisson Quay Wall (케이슨식 안벽의 신뢰성해석을 위한 중요도추출법의 적용)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.405-409
    • /
    • 2009
  • Reliability analysis of coastal structure using importance sampling was shown. When Monte Carlo simulation is used to evaluate overturng failure probability of coastal structure, very low failure probability leads to drastic increase in simulation time. However, importance sampling which uses randomly chosen design candidates around the failure surface makes it possible to analyze very low failure probability efficiently. In the numerical example, failure probability of caisson type quay wall was analyzed by using importance sampling and performance according to the level of failure probability was shown.

Stochastic FMECA Assessment for Optimal RCM of Combustion-Turbine Generating Unit (복합화력발전기의 신뢰도 기반 유지보수를 위한 확률론적 FMECA 평가)

  • Joo, Jae-Myung;Lee, Seung-Hyuk;Shin, Jun-Seok;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.254-259
    • /
    • 2007
  • PM(Preventive Maintenance) can avail the generating unit to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the power systems in which reliability is essential. Thus, to schedule optimal PM planning based on reliability that is defined RCM(Reliability-Centered Maintenance), FMECA(Failure Mode Effects and Criticality Analysis) assessment is very important. Therefore, in this paper, the procedure of FMECA assessment for optimal RCM is proposed by probabilistic approach using real historical failure data of combustion-turbine generators in Korean power systems. The stochastic FMECA is performed based on the effects of probable failure modes of combustion-turbine generating unit.

Root Cause Analysis on Failure Mode of Calorifier for Vessel (선박용 calorifier의 고장모드에 대한 근본원인분석)

  • Lee D.B.;Kim J.H.;Kang S.K.;Kang Y.B.;Kim H.S.
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.93-103
    • /
    • 2006
  • Basic function of calorifier system is to supply warm water to the vessel. The heater used in the calorifier system plays a very important role in its reliability. The failure mechanism of heater are compared with accelerated life test. The main cause of failed heater is pitting corrosion occurred between the surface of heater and spacer. To prevent the corrosion failure from heater, material of spacer replaces metal(SUS 304) with polymer (Acryl). The life of redesigned heater can guarantee 2.47years of B10 life under the worst condition.

  • PDF

A Comparison of Reliability Factors of Software Reliability Model Following Lifetime Distribution Dependent on Pareto and Erlang Shape Parameters (파레토 및 어랑 형상모수에 의존한 수명분포를 따르는 소프트웨어 신뢰성 모형에 대한 신뢰도 특성요인 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.2
    • /
    • pp.71-80
    • /
    • 2017
  • Software reliability is one of the most elementary and important problems in software development In order to find the software failure occurrence, the instantaneous failure rate function in the Poisson process can have a constant, incremental or decreasing tendency independently of the failure time. In this study, we compared the reliability performance of the software reliability model using the parameters of Pareto life distribution with the intensity decreasing pattern and the shape parameter of Erlang life distribution with the intensity increasing and decreasing pattern in the software product testing. In order to identify the software failure environment, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, we compare and evaluate software reliability by applying software failure time data. The reliability of the Erlang and Pareto life models is shown to be higher than that of the Pareto lifetime distribution model when the shape parameter is higher and the Erlang model is more reliable when the shape parameter is higher. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing basic knowledge using software failure analysis.

A Study on the Reliability(Environmental) Test Trend in Korea Electronic Industries (국내 전자부품 중소기업의 신뢰성 시험 활용현황 및 지원방향)

  • Kang, Bo-Chul;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2007.04a
    • /
    • pp.331-333
    • /
    • 2007
  • Product reliability is important to quality and competitiveness. Much management and engineering efforts go into evaluating reliability, assessing new designs and changes of manufacturing processes, identifying cause of failure. Major methods are based on environmental test. In this study, we analysis the environmental test data of the electrical component, unit, set. These data were gathered for 7 years.

  • PDF

A Reliability Study on the Weak Point Analysis of the Development Parts (개발부품의 설계취약점 분석을 위한 신뢰성 연구)

  • Kim, Sung Ok;Park, Sang Wook;Lee, Sang Hun
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • The requirements of reliability verification for new products and technology are increasing more and more in accordance with the trend change of strength for safety technology, functional skills and emotional quality. In order to conduct the purpose of robust design from the stage of product development recently, the application of reliability technology has gradually increased such as detecting the failure mode throughout the HALT technique, accelerated tests and so on. The main results are as follows; i) through the pre-test and analysis, detected the basic performance and predictable failure mode, ii) HALT technique and process has been developed that can be applied test methods for the next new products.

Root Cause Analysis on Delamination Failure between Coating Film and Paper (코팅지 박리파손에 대한 근본원인분석)

  • Lee, D.B.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.57-63
    • /
    • 2005
  • In the calendar and the advertising catalog, the surface is usually coated by coating polypropylene film. The delamination failure of coating film depends on surface roughness and quality of the substrate paper. In this paper, the mechanisms of delamination failure between the coating film and the paper is investigated by using the root cause analysis as one of techniques of reliability evaluation. The papers used in failure analysis are three kind products made by two domestic and one foreign companies. It found that the main causes of delamination failure between the coating film and the paper were the creation of microvoids caused by shape of filler and their growth caused by contraction of paper.

  • PDF

Reliability of the Railway Power System using Common Cause Failure (공통원인고장을 적용한 철도 전력시스템의 신뢰성 분석)

  • Kwon, Ki-Ryang;Byeon, Yoong-Tae;Kim, Jin-O
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.255-262
    • /
    • 2008
  • The railway is required to be highly reliable, which carries a lot of passenger and baggage. Presently, the reliability prediction method is based on independent failure. If the common cause failure affecting many components simultaneously in a system occurs, the system has seriously an aptitude to be broken out. Therefore, for raising the reliability of the railway power system, it is introduced that the analysis is conducted to use the common cause failure. The common cause failure is modeled and is combined with independent failure. Furthermore in order to examine the method, it is applied to the railway power substation. If this method is used to the power system, the reliability of the railway power system will be highly improved.

  • PDF

Reliability Analysis of Plane Failure in Rock Slope (암반사면의 평면파괴에 대한 신뢰성해석)

  • 장연수;오승현;김종수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.119-126
    • /
    • 2002
  • A reliability analysis is performed to investigate the influence of the uncertainty from few in-situ samples and inherent heterogeneity of the ground on the probability of failure for a rock cut slope. The results are compared with those of deterministic slope stability analysis. The random variables used are unit weight of the rock, the angle of potential slope of failure, and cohesion and internal friction angle of joints. It was found that the rock slope in which the factor of safety satisfied the minimum safety factor in the deterministic analysis has high probability of failure in the reliability analysis when the weak geological strata are involved in the cut slope. The probability of failure of rock slope is most sensitive to the mean and standard deviation of cohesion in rock joint among the random soil parameters included in the reliability analysis. Sensitivities of the mean values are larger than those of standard deviations, which means that accurate estimation of the mean for the in-situ geotechnical properties is important.