• 제목/요약/키워드: Failed fuel

검색결과 42건 처리시간 0.025초

Investigation of Pellet-Clad Mechanical Interaction in Failed Spent PWR Fuel

  • Jung, Yang Hong;Baik, Seung Je
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.175-181
    • /
    • 2019
  • A failed spent fuel rod with 53,000 MWd/tU from a nuclear power plant was characterized, and the fission products and oxygen layer in the pellet-clad mechanical interaction region were observed using an EPMA (Electron Probe Micro-Analyzer). A sound fuel rod burned under similar conditions was used to compare and analyze, the results of the failed fuel rod. In the failed fuel rod, the oxide layer represented $10{\mu}m$ of the boundary of the cladding, and $35{\mu}m$ of the region outside the cladding. By comparison, in the sound fuel rod, the oxide layer was $8{\mu}m$, observed in the cladding boundary region. The cladding inner surface corrosion and the resulting fuel-cladding bonding were investigated using an EPMA. Zirconium existed in the bonding layer of the (U, Zr)O compound beyond the pellet cladding interaction gap of $20{\mu}m$, and composition of UZr2O3 was observed in the failed fuel rod. This paper presents the results of the EPMA examination of a spent fuel specimen, and a technique to analyze fission products in the pellet-clad mechanical interaction region.

중수로 사용후연료 건전성 검사장비 개발 (Development of CANDU Spent Fuel Bundle Inspection System and Technology)

  • 김용찬;이종현;송태한
    • 방사성폐기물학회지
    • /
    • 제11권1호
    • /
    • pp.31-39
    • /
    • 2013
  • 핵연료는 원자로 운전 중 예기치 못한 상황에서 연료 결함을 초래할 수 있다. 핵연료 결함은 연료봉의 수소화나 이물질에 의한 금속 마모, 그리고 펠렛과 피복관의 상호작용에 의해 피복관이 손상된다. 이렇게 손상된 핵연료의 결함원인을 규명하는 것은 원자력발전의 안전운전에 중요하다고 사료된다. 핵연료가 손상되면 원자로 냉각재가 오염되어 원자로 출력을 낮추거나, 발전소를 정지할 수도 있다. 모든 사용후연료는 건식저장고로 이동 보관되어야 하나, 결함연료는 이동할 수 없으므로 이 연구의 목적은 중수로형 원자로에서 연료가 인출된 후 사용후연료 저장조에서 보관된 연료에 대하여 결함 여부를 판단할 수 있는 기술을 개발하고자 하였다. 이 연구를 통하여 핵종 누설 검출 기술을 이용한 사용후연료 검사기술을 개발하였으며, 이 기술을 월성발전소에 적용함으로써, 검사기술 및 검사시스템에 대한 성능을 입증하였다.

CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

  • Park, Jong-Youl;Shim, Moon-Soo;Lee, Jong-Hyeon
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.875-882
    • /
    • 2014
  • In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU) reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

FISSION PRODUCT RELEASE ASSESSMENT FOR A LARGE BREAK LOCA IN CANDU REACTOR LOADED WITH CANFLEX-NU FUEL BUNDLES

  • Oh, Dirk-Joo;Ohn, Myeong-Yong;Lee, Kang-Moon;Suk, Ho-Chun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.484-488
    • /
    • 1997
  • Fission product release (FPR) assessment for 100% reactor outlet header (ROH) break in CANDU reactor loaded with CANFLEX-NU fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The fuel failure thresholds for the CANFLEX and standard bundle elements are very similar. All the sheaths at the corresponding fuel failure thresholds for the CANFLEX and standard bundles fail due to the significant cracks in the surface oxide, except those for the CANFLEX inner element at burnups of 220 to 240 MW.h/kg(U), which fail due to the excessive diametral strain. The fuel failure analysis predicts that the number of failed fuel elements for the CANFLEX bundle case is none, while that for the standard bundle case is 1827. The total (gap plus bound) I-131 releases for the CANFLEX and standard bundles are none and 5889 TBq, respectively The significant reduction of the number of failed fuel elements and FPR for the CABFKEX fuel bundle is attributed to the lower linear power of the CANFLEX fuel bundle compared with the standard fuel bundle.

  • PDF

Failure Analysis of a Ball in the Nuclear Fuel Exchanger

  • Kim, H.P.;Kim, D.J.;Hwang, S.S.;Joung, M.K.;Lim, Y.S.;Kim, J.S.
    • Corrosion Science and Technology
    • /
    • 제4권5호
    • /
    • pp.211-216
    • /
    • 2005
  • Failure analysis of the latch ram ball and the C-ram ball with the trade name AFBMA Gr. 50 Colmonoy No. 6, has been performed to identify the root cause of the failure. The study required the extraction of the both failed and normal balls from the nuclear fuel exchanger. Microstructures of both balls were examined after polishing and etching. Breaking tests of both the ball revealed similarity in cleavage surfaces. Fracture surfaces of both failed ball and normal ball after breaking test were examined with SEM and EDX. Microstructure of the ball revealed an austenite phase with coarse Cr rich precipitate. Indented marks observed on the surface of the failed ball are believed to be produced by overloading. In the light of the afore mentioned observations and studies, the failure mechanism of the ball in nuclear fuel exchanger seem to be caused by impact or mechanical overloading on ball.

예비 핵연료의 이용 (Utilization of the Stand-by Fuel Assemblies)

  • Kim, Hark-Rho;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.63-72
    • /
    • 1981
  • 핵연료 집합체의 예기치 않은 파손으로 인하여 설계 근거 재장전 방침이 변경되면 원자로심내에서의 출력 분포 비균형을 막기 위하여 파손된 핵연로 집합체 이외에 대칭 위치의 집합체도 제거되어야 할 경우가 있다. 이와 같은 때에 제거된 핵연료 집합체가 설계연소도에 미달되는 경우 이를 다시 사용하여 핵연료 이용률을 증진시키는 것이 연구되었다. TDCORE 코드가 노심ㆍ해석을 위해 이용되었으며, 최적장전모형을 찾는 코드로는 RELOAD-II가 이용되었다. 고리 1호기에 적용한 결과, 제 1주기말에 제거된 비교적 적게 연소된 4개의 핵연료집합체를 제 3주기에서 이용할 경우 주기 연소도가 l1648 MWD/MTU(가동율 : 80%)에 이를 수 있음을 알 수 있었으며 평형주기까지의 장전모형을 추적하였다.

  • PDF

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.