• Title/Summary/Keyword: Factory Data Model

Search Result 152, Processing Time 0.031 seconds

Forecasting the Demand Areas of a Factory Site: Based on a Statistical Model and Sampling Survey (공장용지 수요 추정 모형 개발 및 수요예측)

  • Jeong, Hyeong-Chul;Han, Geun-Shik;Kim, Seong-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.465-475
    • /
    • 2011
  • In this paper, we have considered the problems of the estimation of the gross areas of a factory site relating to the areas of industrial complex lands based on a statistical forecasting model and the results of a sampling survey. In respect to the data of a gross areas of a factory site, we have only the sizes from 1981-2003. In 2009, the Korea Industrial Complex Corp. conducted a sampling survey to estimate its bulk size, and investigate the demands of its sizes for the next five years. In this study, we have adopted the sampling survey results, and have created a statistical growth model for the gross areas of a factory site to improve the prediction for the areas of a factory site. The three-different parts of data: the results of areas of a factory site by Korea National Statistical Office, imputation results by the statistical forecasting model, and sampling survey results have used as the basis for analysis. The combination of the three-different parts of data has created a new forecasting value of the areas of a factory site through the spline smoothing method.

The Effect of Both Employees' Attitude toward Technology Acceptance and Ease of Technology Use on Smart Factory Technology Introduction level and Manufacturing Performance (종업원 기술수용태도와 기술 사용용이성이 스마트공장 기술 도입수준과 제조성과에 미치는 영향)

  • Oh, Ju Hwan;Seo, Jin Hee;Kim, Ji Dae
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.2
    • /
    • pp.13-26
    • /
    • 2019
  • The purpose of this study is to examine the effect of each of the two technology acceptance factors(employees' attitude toward smart factory technology, and ease of smart factory technology use) on the introduction level of each of the three smart factory technologies (manufacturing big data technology, automation technology, and supply chain integration technology), and in turn, the effect of each of the three smart factory technologies on manufacturing performance. This study employed PLS statistics software package to empirically validate a structural equation model with survey data from 100 domestic small-and medium-sized manufacturing firms (SMMFs). The analysis results revealed the followings. First, it is founded that employees' attitude toward smart factory technology influenced all of the three smart factory technology introduction levels in a positive manner. In particular, SMMFs of which employees had more favorable attitude toward smart factory technology tended to increase introduction levels of both automation technology and supply chain integration technology more than in the case of manufacturing big data technology. Second, ease of smart factory technology use also had a positive impact on each of the three smart factory technology introduction levels, respectively. A noteworthy finding is this : SMMFs which perceived smart factory technology as easier to use would like to elevate the introduction level of manufacturing big data technology more than in the cases of either automation technology or supply chain integration technology. Third, smart factory technologies such as automation technology and supply chain integration technology had affirmative impacts on manufacturing performance of SMMFs. These results shed some valuable insights on the introduction of smart factory technology : The success of smart factory heavily depends on organization-and people-related factors such as employees' attitude toward smart factory technology and employees' perceived ease of smart factory technology use.

The implementation of Network Layer in Smart Factory

  • Park, Chun Kwan;Kang, Jeong-Jin
    • International journal of advanced smart convergence
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2022
  • As smart factory is the factory which produces the products according to the customer's diverse demand and the changing conditions in it, it can be characterized by flexible production, dynamic reconstruction, and optimized production environment. To implement these characteristics, many kind of configuration elements in the smart factory should be connected to and communicated with each other. So the network is responsible for playing this role in the smart factory. As SDN (Software Defined Network) is the technology that can dynamically cope with the explosive increasing data amount and the hourly changing network condition, it is one of network technologies that can be applied to the smart factory. In this paper, we address SDN function and operation, SDN model suitable for the smart factory, and then performs the simulation for measuring this model.

A Model Design for Enhancing the Efficiency of Smart Factory for Small and Medium-Sized Businesses Based on Artificial Intelligence (인공지능 기반의 중소기업 스마트팩토리 효율성 강화 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.16-21
    • /
    • 2019
  • Small and medium-sized Korean companies are currently changing their industrial structure faster than in the past due to various environmental factors (such as securing competitiveness and developing excellent products). In particular, the importance of collecting and utilizing data produced in smart factory environments is increasing as diverse devices related to artificial intelligence are put into manufacturing sites. This paper proposes an artificial intelligence-based smart factory model to improve the process of products produced at the manufacturing site with the recent smart factory. The proposed model aims to ensure the increasingly competitive manufacturing environment and minimize production costs. The proposed model is managed by considering not only information on products produced at the site of smart factory based on artificial intelligence, but also labour force consumed in the production of products, working hours and operating plant machinery. In addition, data produced in the proposed model can be linked with similar companies and share information, enabling strategic cooperation between enterprises in manufacturing site operations.

Measuring the Factor Influencing Tourist Preferences for Leaf Mustard Kimchi (관광객의 갓김치에 대한 선호도에 미치는 영향요인 평가)

  • Jeong, Hang-Jin;Kang, Jong-Heon
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.4
    • /
    • pp.414-419
    • /
    • 2006
  • The purpose of this study was to measure the factor influencing tourist preferences for leaf mustard iimchi. Among 250 questionnaires, 230 questionnaires were utilized for the analysis. Frequencies, conjoint model, max. utility model, BTL model, Logit model, K-means cluster analysis, and one-way ANOVA analysis were used for this study. The findings from this study were as follows. First, the Pearson's R and Kendall's tau statistics showed that the model fitted the data well. Second, it was found that total respondents and three clusters regarded taste and price as the very important factor. Third, it was found that the first cluster most preferred product with light red color, plain package, and mild taste sold at a cheap price in factory. The second cluster most preferred product with light red color, plain package, and moderately pungent taste sold at a expensive price in factory. The third cluster most preferred product with dark red color, shaped package, and highly pungent taste sold at a cheap price in factory. Fourth, it was found that the first cluster most preferred simulation product with light red color, shaped package, and mild taste sold at a cheap price in factory. The second cluster most preferred simulation product with light red color, shaped package, and moderately pungent taste sold at a cheap price in factory. The third clutter most preferred simulation product with dark red color, shaped package, and highly pungent taste sold at a cheap price in factory.

CONTROL ON PLANT FACTORY IN OPTICAL RADIANT CONDITION ACCORDING TO THE MARKET ECONOMICS

  • Akamine, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.586-592
    • /
    • 2000
  • There is currently no satisfactory way to optimize supplemental lighting in a greenhouse-type plant factory especially concerning plant production. In a commercial plant factory, we got outside radiation data, inside radiation data and lamp running data. They have a correlation, but have much disorder. By using regression, tendency between the outside and the inside including supplemental lighting was found. We could estimate the average transmittance of this plant factory. From this estimation, we could admit the amount of inside radiation was supplied as much supplied compared to natural radiation. Then we are trying to investigate of the production amount and the supplemental lighting. Plant factory is environmentally controlled, the temperature and humidity are not actually controlled stable. We propose a design of neural network model could be useful to estimate the profit resulting from the operation of supplemental lighting.

  • PDF

The Effect of UTAUT, Dynamic Capabilities, Utilization of Smart Factory on the Intention to Continue Using: Technology Perception Moderating Effect

  • Jin-Kwon KIM;Kyung-Soo LEE
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.6
    • /
    • pp.43-55
    • /
    • 2023
  • Purpose: The purpose of this study was to identify the relationship between smart factory utilization and continued use intention between UTAUT, dynamic capabilities of smart factory construction companies and present the company's strategic direction. Research design, data, and methodology: In this study, a structured research model was derived to confirm the relationship between UTAUT, dynamic capabilities, smart factory utilization and continued use intention and the difference according to Technology perception. For analysis a total of 223 valid questionnaires from e-commerce users were used. Confirmatory factor analysis, correlation analysis, and structural equations were conducted to verify. Results: Both UTAUT, dynamic capabilities had a significant effect on smart factory utilization as well as continued use intention. It was found that the relationship between UTAUT, dynamic capabilities, smart factory utilization, and continued use intention. differed depending on the technology perception. Conclusions: Organizational members utilize the smart factory in anticipation of effects such as work performance and various improvements. Smart factory data will be used continuously when it is useful for business processes and operations. It is necessary to establish strategies and provide training to improve the technical level and capabilities of organizational members. Through this, a strategy is needed that can be continuously used by utilizing the information obtained through smart factory to improve work efficiency, productivity and efficiency increase is needed

Development of Smart Factory Diagnostic Model Reflecting Manufacturing Characteristics and Customized Application of Small and Medium Enterprises (제조업 특성을 반영한 스마트공장 진단모델 개발 및 중소기업 맞춤형 적용사례)

  • Kim, Hyun-Deuk;Kim, Dong-Min;Lee, Kyung-Geun;Yoon, Je-Whan;Youm, Sekyoung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.25-38
    • /
    • 2019
  • This study is to develop a diagnostic model for the effective introduction of smart factories in the manufacturing industry, to diagnose SMEs that have difficulties in building their own smart factory compared to large enterprise, to identify the current level and to present directions for implementation. IT, AT, and OT experts diagnosed 18 SMEs using the "Smart Factory Capacity Diagnosis Tool" developed for smart factory level assessment of companies. They analyzed the results and assessed the level by smart factory diagnosis categories. Companies' smart factory diagnostic mean score is 322 out of 1000 points, between 1 level (check) and 2 level (monitoring). According to diagnosis category, Factory Field Basic, R&D, Production/Logistics/Quality Control, Supply Chain Management and Reference Information Standardization are high but Strategy, Facility Automation, Equipment Control, Data/Information System and Effect Analysis are low. There was little difference in smart factory level depending on whether IT system was built or not. Also, Companies with large sales amount were not necessarily advantageous to smart factories. This study will help SMEs who are interested in smart factory. In order to build smart factory, it is necessary to analyze the market trends, SW/ICT and establish a smart factory strategy suitable for the company considering the characteristics of industry and business environment.

AI Smart Factory Model for Integrated Management of Packaging Container Production Process

  • Kim, Chigon;Park, Deawoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • We propose the AI Smart Factory Model for integrated management of production processes in this paper .It is an integrated platform system for the production of food packaging containers, consisting of a platform system for the main producer, one or more production partner platform systems, and one or more raw material partner platform systems while each subsystem of the three systems consists of an integrated storage server platform that can be expanded infinitely with flexible systems that can extend client PCs and main servers according to size and integrated management of overall raw materials and production-related information. The hardware collects production site information in real time by using various equipment such as PLCs, on-site PCs, barcode printers, and wireless APs at the production site. MES and e-SCM data are stored in the cloud database server to ensure security and high availability of data, and accumulated as big data. It was built based on the project focused on dissemination and diffusion of the smart factory construction, advancement, and easy maintenance system promoted by the Ministry of SMEs and Startups to enhance the competitiveness of small and medium-sized enterprises (SMEs) manufacturing sites while we plan to propose this model in the paper to state funding projects for SMEs.

A Study on Organizational Competence and Organizational Performance for Smart Factory Implementation of Korean Small and Medium Enterprises (국내 중소기업의 스마트공장 구축을 위한 조직역량과 조직성과에 관한 연구)

  • Seo, Pan Jong;Kim, Dong Hui;Moon, Tae Soo
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.197-218
    • /
    • 2022
  • Purpose This study examines the roles of firm-level smart factory implementation in the relationship between organizational competence and organizational performance in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study presents and empirically tests a research model with evaluation data conducted by industrial experts on how organizational competence can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach Organizational competence are based on the research construct developed by Odważny et al.(2018). Research constructs on smart factory are based on the measurement model developed by Korea Technology and Information Promotion Agency for Korea small and medium Enterprises (TIPA) (2020) and organizational performance are based on the performance construct developed by Kwon(2019). To complete the investigation, we collected 31 firm data conducted by industrial experts in Korea from Dec 2018 to Dec 2020. Most of firm was implemented officially by government budget granted for smart factory of Korea SMEs. To test our hypotheses, partial least squares (PLS) method was employed. Findings The findings indicate that organizational competence is antecedent to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competence and organizational performance through smart factory implementation. So companies should focus on enhancing organizational competence and implementing smart factory to obtain sustainable competitiveness.