• 제목/요약/키워드: Factorial design

검색결과 996건 처리시간 0.027초

고체상미량분석법(SPME-GC/FID)에서 요인배치법을 이용한 디젤첨가제의 미량분석의 특성 평가 (Characteristics of trace analysis of potential diesel oxygenates using the factorial design in solid-phase microextraction with GC/FID)

  • 박재상;장순웅
    • 분석과학
    • /
    • 제20권5호
    • /
    • pp.370-382
    • /
    • 2007
  • 본 연구에서는 GC/FID를 이용한 SPME법을 적용하여 액상에서 대표적 디젤첨가제인 EGBE, DGBE, DBM, TGME의 미량 분석 가능성을 조사하였다. 또한, 요인배치설계법을 적용하여 EGBE, DGBE, DBM, TGME 미량분석의 최적조건을 도출하였다. 실험은 통계분석결과 뿐만 아니라 요인 수의 최적화에 따른 중심합성설계에 의한 완전요인 설계법을 사용하였으며, 반응표면분석은 추출 효율이 주 영향인염 농도, 흡착 온도, 흡착 시간과 sonication 시간에 따른 2차 다항식에 의해 설명될 수 있음을 보여주었다. 본 연구에서의 결과는 요인배치설계법을 사용하여 액상 시료에서 EGBE, DGBE, DBM, TGME의 정량분석을 개선하는 새로운 자료분석법을 보여주었다.

전.후기 허약 고위험 노인을 대상으로 한 지역사회 중심의 다요인적 허약 예방 프로그램의 효과 평가 (Evaluation of the Effects of a Frailty Preventing Multi-factorial Program Concentrated on Local Communities for High-risk Younger and Older Elderly People)

  • 이인숙;고영;이광옥;임은실
    • 지역사회간호학회지
    • /
    • 제23권2호
    • /
    • pp.201-211
    • /
    • 2012
  • Purpose: The purpose of this study is to evaluate the effects of a local community based multi-factorial program for high-risk younger and older elderly people. Methods: The quasi-experimental research design (pretest-post test) was employed. Participants were recruited in Seoul and a total of 98 elders completed an 8-week multi-factorial program for preventing frailty. Descriptive statistics, $x^2$-test and GLM were used in the data analysis with SPSS/WIN 15.0. Results: The high-risk elderly people in the younger and older stages showed differences in IADL, TUG and BMI, and after being provided with the multi-factorial program for preventing frailty, some effects were shown on improving the total score of frailty, a physical function, TUG, BMI, depression, subjective feeling of health, and social interaction. Conclusion: The 8-week multi-factorial program for preventing frailty had positive effects on improving physical, emotional and social functions of the high-risk elderly people. It is necessary to evaluate the effects after individual intervention as well as group intervention and to evaluate the effects of the program by setting a control group in the future.

BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감 (Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution)

  • 김사무엘;정승호;류세현;권병일
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

컨조인트 분석에서 효율적인 문항 설계 (Efficient designs in conjoint analysis)

  • 정종희;임용빈
    • 품질경영학회지
    • /
    • 제46권1호
    • /
    • pp.27-38
    • /
    • 2018
  • Purpose: A large number of attributes with mixed levels are often considered in the conjoint analysis. In the cases where attributes have two or three levels, we research on the efficient design of survey questionnaire to estimate all the main effect and two factor interaction effects with a reasonable size of it. Methods: To reduce the number of questions in a questionnaire, the balanced incomplete block mixed level factorial design with minimum aberration was proposed by Lim and Chung (2016). Based on the number of questions and that of the respondents in that design, D-optimality criterion is adopted to find efficient designs where the main effect and two factor interaction effects are estimated. Results: The list of the number of questions and that of the respondents in efficient designs for survey questionnaire are recommended based on the D-efficiency of each design and the proposed selection criteria for the number of both questions and the respondents. By analyzing all the respondents survey data generated by the simulation study, we find the proper model. Conclusion: The proposed methods of designing survey questionnaires seem to perform well in the sense that how often the proper model is found in a simulation study where all the respondents survey data are generated by the simulation model.

압전 젯팅 디스펜서의 작동 변수에 대한 실험적 분석 (Experimental Analysis of Operating Parameters for Piezoelectric Jetting Dispenser)

  • 손정우;홍승민;김기우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.685-691
    • /
    • 2015
  • In this work, to identify effective parameter for performance of piezoelectric jetting dispenser, experimental investigation is carried out based on design of experiment. After preparing jetting dispenser using two stack-type piezoelectric actuators, basic working principle of the jetting dispenser is described. Eight operating conditions are chose as main factors and it is assumed that each factor has two levels. To reduce number of experiments for performance evaluation, the experimental sets are designed based on factional factorial design method. Experimental setup is established and the weight of single dot is measured by using precision scale. The main and interaction effects of factors are analyzed using commercial statistical program and optimal operating condition for small amount and small variation of weight of dispensed single dot are determined.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

수열처리에 의한 폐병유리의 다공질 재료화 (Porous Materials from Waste Bottle Glasses by Hydrothermal Treatment)

  • 임동규;강은태
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.275-281
    • /
    • 2009
  • Porous materials were manufactured by hydrothermal treatment of waste bottle glass without foam agent. Factorial design was applied to analyze data by statistical methods and deal with the important factors for a process. The largest effect for porosity was for temperature of hydrothermal treatment. Amount of water and temperature-water interaction appeared to have little effect. The particle size of raw material was also identified as a major factor by one-way ANOVA and the porosity decreased as the size increased. The sintering temperature was not statistically significant for the porosity but was significant for the pore size. The porous material had compressive strength and thermal conductivity comparing with those of ALC (autoclaved lightweight concrete), although it has higher porosity than for ALC.

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • 제2권2호
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

매실을 이용한 알콜 발효의 최적 조건 (Optimum Condition for Alcohol Fermentation Using Mume (Prunus mume Sieb. et Zucc) Fruits)

  • 손상수;지원대;정현채
    • 한국식품영양과학회지
    • /
    • 제32권4호
    • /
    • pp.539-543
    • /
    • 2003
  • 매실을 사용하여 알콜을 생산하기 위하여 당농도, 발효온도, 발효시간의 3변수와 5수준의 fractional factorial design으로 RSM computer program을 사용하여 최적 발효조건을 조사하였다 알콜함량에 대한 회귀분석결과, $R^2$는 0.9276으로 높게 나타났다. 당농도 8.39%, 발효온도 28.86$^{\circ}C$에서 3.84일간 발효하는 것이 알코올 생성을 위하여 가장 양호하였으며, 이 조건에서의 알코올 생성 예상치는 5.24%이었다.

Methodology to Simultaneously Optimize the Inlet Ozone Concentration to Oxidize NO and Relative Humidity Composition for the $NO_x$ Degradation using Soil Bio-filter

  • Cho, Ki-Chul;Hwang, Kyung-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E2호
    • /
    • pp.83-91
    • /
    • 2008
  • This work investigated the methodology to simultaneously optimize the ozone and relative humidity composition for the $NO_x$ degradation using soil biofilter. Experiments were made as a function of inlet ozone concentration ($0{\sim}1,770\;ppb$) and relative humidity ($38{\sim}81%$). Factorial design ($2^2+3$) and response surface methodology by central composite designs were used to examine the role of two factors and optimal response condition on $NO_x$ degradation. It was found that a second-order response surface model can properly interpret the experimental data with an $R^2$-value of 0.9730 and F-value of 71.83, based on which the maximum $NO_x$ degradation was predicted up to 92.8% within our experimental conditions.