• Title/Summary/Keyword: Factor Loading

Search Result 1,335, Processing Time 0.028 seconds

Behavior of Fatigue Crack Initiation and Propagation under Cyclic Tensile or Torsional Loading with Superimposed Static Biaxial Load (이축 정적 하중이 부가된 반복 인장 혹은 비틀림 하중하에서 균열 발생과 성장 거동)

  • Heo, Yong-Hak;Park, Hwi-Rip;Gwon, Il-Beom;Kim, Jin-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1446-1455
    • /
    • 2000
  • Fatigue crack initiation and propagation behavior under cyclic biaxial loading has been investigated using thin-walled tubular specimen with a hole. Two types of biaxial loading system, i.e. cyclic tensile loading with super-imposed static torsional load and cyclic torsional loading with superimposed static tensile load, with various values of the biaxial loading ratio, $\tau$ s/ $\sigma$ max (or $\tau$ max/ $\sigma$s) were employed. Fatigue tests show that fatigue crack near the hole initiates and propagates at 900 and 450 direction to the longitudinal direction of the specimen under cyclic tensile and torsion loading with static biaxial stress, respectively, and the static biaxial stress doesn't have any great influence on fatigue crack initiation and growth direction. Stress analysis near the hole of the specimen shows that the crack around the hole initiates along the plane of maximum tangential stress range. Fatigue crack growth rates were evaluated as functions of equivalent stress intensity factor range, strain energy density factor range and crack tip opening displacement vector, respectively. It is shown that the biaxial mode fatigue crack growth rates can be relatively consistently predicted with these cyclic parameters.

A Numerical Study on Slip Factor Variations in Centrifugal Compressor Impellers (원심압축기 임펠러의 미끄럼계수 변화에 관한 수치연구)

  • Oh, Jongsik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.17-23
    • /
    • 1999
  • In the present numerical analysis, investigation of the effect of blade loadings from design shape on the slip factor variation was studied. Both the Eckardt radial bladed impeller and the backswept impeller were analyzed. In addition, a new design of the blade profile was arbitrarily attempted to generate a center-loading pattern in the original backswept impeller. Three dimensional compressible Navier-Stokes flow analysis with the Baldwin-Lomax turbulence model was applied to get the numerical slip factor at each impeller exit plane using the mass-averaging technique. The numerical slip (actors are in good agreement with the experimental ones and the Wiesner's slip factors deviate further from the numerical and experimental ones in both backswept impellers. Deviation angles and meridional channel loadings are found in no relation with the trend of change of the slip factor. Blade-to-blade loadings in midspan location are, however, found to have a direct relationship, especially at the sections where maximum loadings we to be expected. That information can be utilized in establishing an improved expression for slip factors in the future.

  • PDF

Simplified estimations of elastic-plastic fracture mechanics parameters under combined primary and secondary loadings (1차 및 2차 복합 하중을 받는 구조물의 탄소성 파괴역학 매개변수 예측기법)

  • Oh, Chang-Kyun;Kim, Yun-Jae;Park, Jin-Moo;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.43-48
    • /
    • 2004
  • When structures are loaded by a combination of primary and secondary stresses, plasticity effects occur which cannot be evaluated by a simple linear addition of the effects resulting from the two independent stress systems. Thermal stress due to temperature gradient is classified as secondary stress. It is known that secondary stress is released as increase of plastic zone. In this paper, two and three dimensional elastic-plastic finite element analyses are performed for the cracked plates and pipes under combined thermal and mechanical loading. And V-factor is introduced to account for plasticity effect. The present results provide that V-factor is function of thermal factor and loading and is consistent regardless of geometry. We developed the prediction method of elastic-plastic fracture mechanics parameter under combined primary and secondary loading from the present results.

  • PDF

Evaluation of Water Quality in the Keum River using Statistics Analysis (통계분석 기법을 이용한 錦江水系의 水質評價)

  • Kim, Jong-Gu
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1281-1289
    • /
    • 2002
  • This study was conducted to evaluate water quality in the Keum River using multivariate analysis. The analysis data in Keum river made use of surveyed data by the ministry of environment from January 1994 to December 2001. Thirteen water quality parameter were determined on each sample. The results was summarized as follow; Water quality in the Keum River could be explained up to 71.39% by four factors which were included in loading of organic matter and nutrients by the tributaries (32.88%), seasonal variation (16.09%), loading of pathogenic bacteria by domestic sewage of Gapcheon (13.39%) and internal metabolism in estuary as lakes(9.03%). For spatial variation of factor score, four group was classified by each factor characterization. Station 1 and 2 was influenced by Daechung dam, station 3 was affected by domestic sewage of Gapcheon, station 10~12 was affected by estuary dyke and the rest station. The result of cluster analysis by station was classified into four group that has different water quality characteristics. In monthly cluster analysis, three group was classified according to seasonal characteristic. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by Gapcheon inflow domestic sewage in Daejeon city for the sake of water quality management of Keum river.

Nutrient Loads from Agricultural Watersheds using Unit Loading Factor and SWAT Model (원단위법과 SWAT모형을 이용한 농업유역의 영양물질 부하량 추정)

  • Kim, Sang-Min;Park, Seung-Woo;Kang, Moon-Seong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-86
    • /
    • 2003
  • To estimate the nutrient loads from an agricultural watershed, SWAT model and Unit Loading Factor method which was proposed by Ministry of Environment were applied for study watershed. The observed hydrologic and water quality data were compared with estimated methods for the Balhan HP#6 study watershed having an area of $3.86km^2$. The estimated nutrient loads were found to be similar values with the observed.

  • PDF

Acoustic emission behavior during fatigue crack propagation in 304 Stainless steel (피로균열진전에 따른 304 강의 음향방출 거동)

  • Oh, Kwang-Hwan;Jung, Chang-Kyu;Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.213-219
    • /
    • 2003
  • Acoustic emission behavior during fatigue crack growth test was investigated under various loading condition. To describe the acoustic emission activity, counts rate (d/dn) was related with SIFR (stress intensity factor range, K). Results indicated that SIFR could be divided into two parts according to its relationship with counts rate. For $K<25_{MPa\sqrt{m}}$, counts rate was increased as the SIFR increased. However, for values greater than $25_{MPa\sqrt{m}}$ , decreasing behavior was shown. This behavior of counts rate corresponding SIFR was keeping the same trend regardless of load range or crack length. Acoustic emission response to the single overload was sudden drop and slow recovery in counts rate like crack growth retardation. Under variable loading condition, counts rate of each loading block was same as that of constant amplitude loading. Overall experimental data was somewhat scattered since sensitive characteristics of acoustic emission method. However, these empirical relations indicated that counts rate was uniquely correlate with single parameter, SIFR.

  • PDF

Fatigue Crack Growth Rates of a Railway Wheel Steel under Mixed Mode Loading Conditions (혼합모드 하중조건에서의 철도 차륜재의 피로균열 실험에 관한 연구)

  • Kim, Taek-Young;Lee, Man-Suk;You, In-Dong;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.8-13
    • /
    • 2013
  • Fatigue crack growth tests were conducted on urban railway wheel steel under mode I and mixed-mode conditions. Fatigue crack growth rates were evaluated in terms of equivalent stress intensity factor ranges, using both the extended and projected crack lengths. The equivalent stress intensity factor range with the growth rate results obtained under mode I loading conditions can be used to predict the crack growth rate under mixed-mode loading conditions. Extended crack length rather than projected crack length is appropriate for the prediction of the crack growth rate under the mixed-mode loading conditions.

Water Quality Evaluation on the Bottom Water of Masan Bay by Multivariate Analysis (다변량 해석에 의한 마산만 저층수의 수질평가)

  • Lee, Mu-kang;Hwang, Jeung-Wook;Choi, Young-Kwang
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 1996
  • During the last two decades, many industrial complexes for heavy and chemical industries have been established along the Korean coastline, thereby increasing the pollution materials burden on the coastal environment of seawater. Masan Bay is one of the most polluted coastal areas in Korea and the main soures of pollutants are domestic and industrial wastewater from Masan, Changwon. This study was aimed to evaluate relationships among the physicochemical parameters in the bottom water of Masan bay and to examine environmental factors affecting to pollutions of seawater by factor analysis. 'rife factor loading, 1 is showed higher increasing inclination after 1989 year in station 1. The variance of pollutant materials is showed 43.7% in which the coastal inflow water is indicated external loadings(factor 1 : NO3--N, TN, factor 4 : SiO2-Si) corresponded to domestic sewage, industrial wastewater, and earth-sands in the bottom water of Masan bay And the internal loadings(factor 2 : SS, salinity, factor 3 . W.T., DO) are explained 33.8%'corresponded the phenomena of sedimentary layer and oxygen concentration. Therefore, The external loadings are explained by the higher factor pollutantal variance in Masan bay.

  • PDF

The Study on the Optimum Loading of Carbon Black for the Different Kind of Rubber Compounds (고무종류에 따른 카본블랙의 최적 투입량에 관한 연구)

  • Yoon, Chan Ho;Lee, Ihn;Cho, Chun Teck;Chae, Kyu Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.565-572
    • /
    • 1996
  • The optimum loading of carbon black was studied for the rubber compounds of natural rubber(NR), butadiene rubber(BR), and styrene-butadiene rubber(SBR) with different amount of oil. The optimum loading of carbon black was determined by the volume ratio of carbon black and L factor of Lee's theory. The optimum loading of carbon black was confirmed by the examination of physical properties of the rubbers. The optimum loading amounts of carbon black for the each rubber compound were 60 phr for NR, 57 phr for BR, 65 phr for SBR-A, 70 phr for SBR-B, and 76 phr for SBR-C, respectively. The optimum loading of carbon black was increased by 5 phr for every increment of 20 phr of oil content. It was revealed that the optimum loading amount of carbon black determined by L factor is closely related to the tensile strength of the rubber compounds. The optimum loading amount of carbon black was observed at the amount which shows the maximum value of tensile strength.

  • PDF

Loading rate effect on the delamination toughness of carbon/epoxy composites (하중속도가 탄소섬유/에폭시 적층복합재의 층간분리인성에 미치는 영향)

  • Ha S.R.;Rhee K.Y.;Kim H.J.;Jung D.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.593-597
    • /
    • 2005
  • It is generally accepted that fracture toughness of fiber-reinforced polymer composites is affected by loading rate in an atmospheric presure condition. For a present study, the loading rate effect on the fracture toughness of fiber-reinforced laminated composites in the hydrostatic pressure condition was investigated. For this purpose, fracture tests have been conducted using carbon/epoxy composites applying three steps of the strain rate at 270 MPa hydrostatic pressure condition. The loading rates applied were 0.05%/sec, 0.25%/sec, and 0.55%/sec. Fracture toughness was determined from the work factor approach as a function of applied loading rate. The result showed that fracture toughness decreased as the loading rate increased. Specifically, the fracture toughness decreased 12% as the loading rate increased from 0.05%/sec to 0.55%/sec.

  • PDF