• Title/Summary/Keyword: Factor AA

Search Result 277, Processing Time 0.027 seconds

Nuclear Factor-${\kappa}B$ Dependent Induction of TNF-${\alpha}$ and IL-$1{\beta}$ by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 Cells

  • Na, Hee Sam;Jeong, So Yeon;Park, Mi Hee;Kim, Seyeon;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.39 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-${\kappa}B$, NF-${\kappa}B$-related genes, inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW 264.7 cells. NF-${\kappa}B$ inhibitor pretreatment significantly reduced the levels of TNF-${\alpha}$ and IL-$1{\beta}$ mRNA and protein. In addition, the Aa LPS-induced TNF-${\alpha}$ and IL-$1{\beta}$ expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-${\alpha}$ and IL-$1{\beta}$ expression through NF-${\kappa}B$ and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.

Hepatoprotective effect of Samchulgeonbi-tang via Nrf2 Activation (Nrf2활성화를 통한 삼출건비탕(蔘朮健脾湯)의 간세포보호효과)

  • Ye Lim Kim;Hyo Jeong Jin;Sang Mi Park;Sung Hui Byun;Chang Hyun Song;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.2
    • /
    • pp.111-124
    • /
    • 2023
  • Objectives : Oxidative stress is an important cause of many diseases including liver injury. Therefore, adequate regulation of oxidative stress plays a pivotal role in maintaining liver function. Until recently, there has been no studies on the hepatoprotective effect of Samchulgeonbi-tang (SCGBT). Therefore, the hepatoprotective effect of SCGBT was investigated in HepG2 cells. In this study, oxidative stress was induced by arachidonic acid (AA) and iron. Methods : To analyze the hepatoprotective effects of SCGBT against oxidative stress induced by AA + iron, the cell viability, apoptosis-related proteins and intracellular ROS, glutathione (GSH), and mitochondrial membrane permeability (MMP) were measured. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) transcription activation and expressions of Nrf2 target gene were analyzed through immunoblot analysis. Results : SCGBT increased the cell viability from AA + iron - induced cell death and inhibited apoptosis by regulating apoptosis related proteins. SCGBT protected cells by inhibiting ROS production, GSH depletion, and MMP degradation against AA + iron induced oxidative stress. Furthermore, Nrf2 activation was increased by SCGBT, and the Nrf2 target genes were also activated by SCGBT. Conclusions : These results suggest that the SCGBT has a hepatocyte protection effect and antioxidant effect from AA + iron induced oxidative stress.

Crystallization and Preliminary X-Ray Crystallographic Analysis of PAS Factor from Vibrio vulnificus

  • Lee, Jun Hyuck;Kim, Soo Young;Rho, Seong-Hwan;Im, Young Jun;Kim, Young Ran;Kim, Mun-Kyoung;Kang, Gil Bu;Rhee, Joon Haeng;Eom, Soo Hyun
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.361-363
    • /
    • 2005
  • Plasmid Achromobacter secretion (PAS) factor is a putative secretion factor that induces the secretion of periplasmic proteins. PAS factor from Vibrio vulnificus was crystallized at 294 K by the hanging drop vapor-diffusion method. It was isolated as a monomer during the purification procedures. The native crystal belongs to the F222 space group with unit cell parameters a = 56.1, b = 74.4, $c=80.0{\AA}$, ${\alpha}={\beta}={\gamma}=90^{\circ}$. The crystal was soaked in cryoprotectant containing 1 M NaBr for 1 h for MAD phasing. The diffraction limit of the Br-MAD data set was $1.9{\AA}$ using synchrotron X-ray irradiation at beam line BL-18B at the Photon Factory, Japan.

Classification of Size System of Brassiere According to the breast types for Improvement of the Wearing Comfort (착용 기능성 개선을 위한 유방 형태별 브래지어 치수체계 설정)

  • 임지영
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.6
    • /
    • pp.119-129
    • /
    • 2003
  • This study was peformed to establish the standard size system to be required for the production of brassiere. The subject were 155 Korean twenties-aged women and were directly measured anthropometrically. From 27 measurements, 5 factors were extracted through factor analysis. The accumulative contribution ratio is 76.92%. Factor 1 indicates the degree of obesity around the chest, factor 2 is the drooping degree of breast, factor 3 is the contours and prominence, factor 4 is the breast breadth and breadth of bust point, factors 5 is the volume of breast. The subject were classified into 3 cluster as their breast types through cluster analysis. Type 1 is the closest to the ideal breast shape and not too droopy. This group belonged to 75A. Type 2 has small breast and belonged to 70AA group. Type 3 is the obesest and has the biggest and droopy breast. This group belonged to 75B. The distribution of size of brassiere had 3 sections from 70 to 80 showing a rate of 81.94% and the sin of the cup had 4 sections from AAA cup to B cup showing a rate of 89.70%. The production ratio of each brassiere size, it was found that the brassiere size of highest production ratio was 75A(16.39%) in type 1,70AA(16.27%) in type 2, and 75B(13.72%) in type 3. This suggests that it is necessary to adjust for the production rate of brassieres.

The Synthesis and Crystal Structure of (${\eta}^5-Cp^*$)(Ir-B3)(1,2-S,S($CH_2SiMe_3$)-o-carborane)($C_{16}H_{35}B_{10}IrS_2Si$) ((${\eta}^5-Cp^*$)(Ir-B3)(1,2-S,S($CH_2SiMe_3$)-o-carborane) ($C_{16}H_{35}B_{10}IrS_2Si$)의 합성 및 결정구조)

  • Cho, Sung-Il
    • Korean Journal of Crystallography
    • /
    • v.18 no.1_2
    • /
    • pp.1-6
    • /
    • 2007
  • An Organometallic compound, $C_{16}H_{35}B_{10}IrS_2Si$, was synthesized from o-carborane, $Cp^*Ir(S_2C_2B{10}H_{10})$, and $Me_3SiCHN_2$. The molecular structure of this complex has been determined by X-ray diffraction. Crystallographic data : monoclinic, space group $P2_1/n$, $a=10.1986(12)\;{\AA}$, $b=14.834(5)\;{\AA}$, $c=17.139\;{\AA}$, ${\beta}=92.24(2)^{\circ}$, Z=4, $V=2591.0(14)\;{\AA}^3$. The structure was solved by direct methods and refined by full-matrix leat-squares methods to give a model with a reliability factor R=0.053 for 5080 reflections.

Synthesis and Crystal Structure of $Me_2Pt(PPh_2CH_2C(t-Bu)=N-N=CMe(2-py)-\kappa^2N,P)$ ($Me_2Pt(PPh_2CH_2C(t-Bu)=N-N=CMe(2-py)-\kappa^2N,P)$의 합성 및 결정 구조)

  • Cho Sung Il;Kang Sang Ook;Chang K.
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.83-87
    • /
    • 2004
  • An organometallic complex. $Me_2Pt(PPh_2CH_2C(t-Bu)=N-N=CMe(2-py)-\kappa^2N,P)$ was synthesized from phosphinohydrazone $Ph_2PCH_2C(t-Bu)=NNH_2$, 2-acetylpyridine, and $[PtMe2({\mu}-SMe_2)]_2$. The molecular structure of this complex has been determined by X-ray diffraction. Crystallographic data: monoclinic, space group $P2_1/n,\;a=11.6926(7)\;{\AA},\;b=15.6607(19)\;{\AA},\; c=14.6125(6)\;{\AA},\;\beta=93.018(4)^{\circ},\;Z=4,\;V=2672.0(4)\;{\AA}^3$. The structure was solved by direct methods and refined by full-matrix least-squares methods to give a model with a reliability factor R = 0.0363 for 5238 reflections.

Synthesis and Crystal Structure of 1-(dimethylbromotin)-2-[(methoxyl)methly]-o-carborane $(C_{16}H_{21}B_{10}BrOSn)$ (1-(Dimethylbromotin)-2-[(methoxyl) methly]-o-carborane $(C_{16}H_{21}B_{10}BrOSn)$의 합성 및 결정 구조)

  • Cho Sung Il;Kang Sang Ook;Chang K.
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.88-92
    • /
    • 2004
  • An organometallic compound, $(C_{16}H_{21}B_{10}BrOSn)$, was synthesized from o-carborane, closo-1-[(methoxyl)methyl]-o-carborane $(HCab^o)$, and $SnMe_2Br_2$. The molecular structure of this complex has been determined by X-ray diffraction. Crystallographic data: orthorhombic, space group Pna2, a = 17.9292(15)$\AA$, b= 7.2066(4)$\AA$, c=13.0582(10)$\AA$, Z=4, V=1687.2(2) $\AA^3$. The structure was solved by direct methods and refined by full-matrix least-squares methods to give a model with a reliability factor R=0.0574 for 1724 reflections.

Molecular Strands and Related Properties of Silver(Ⅰ) Triflate with 3,3'-Oxybispyridine vs 3,3'-Thiobispyridine

  • Kim, Yu-Ju;Lee, Young-A;Park, Ki-Min;Chae, Hee K.;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1106-1109
    • /
    • 2002
  • Studies on subtle spacer ligand effects of AgCF3SO3 with 3,3'-Py2X (X = O vs S) have been carried out. The reaction of AgCF3SO3 with 3,3'-Py2O and 3,3'-Py2S produces [Ag(CF3SO3)(3,3'-Py2O)] and [Ag(3,3'-Py2S)] (CF3SO3), respectively. Crystallographic characterization of [Ag(CF3SO3)(3,3'-Py2O)] (monoclinic P1, a =8.405(2) $\AA$, b = 10.714(2) $\AA$, c = 18.031(2) $\AA$, $\alpha=$ 77.36(2), $\beta=107.83(2)^{\circ}$, $\gamma=$ 66.92(2), V = 1438.0(5) $\AA3$ , Z =2,R = 0.0486) reveals that the skeletal structure is an anion-bridged double-strand. The double-strands are packed like a plywood. The framework of [Ag(3,3'-Py2S)](CF3SO3) (orthorhombic Pcab, a = 17.330(2) $\AA$, b = 8.640(1) $\AA$, c = 19.933(6) $\AA$, V = 2985(1) $\AA3$ , Z =8, R = 0.0437) is a sinusoidal single-strand. The formation of each coordination polymer appears to be primarily associated with the donating ability and the confor ma-tional energy barrier of the spacer ligands. Thermal analyses indicate that [Ag(CF3SO3)(3,3'-Py2O)] and [Ag(3,3'-Py2S)](CF3SO3) are stable up to 250 $^{\circ}C$ and 210 $^{\circ}C$, respectively. For the anion exchangeability, the nature of the spacer ligand is more significant factor than the distance of silver(Ⅰ)···triflate.

The Crystal and Molecular Struture of Cholesteryl Isobutyrate

  • Kim, Mi-Hye;Park, Young-Ja;Ahn, Choong-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 1989
  • The structure of cholesteryl isobutyrate, $(CH_3)_2CHCOOC_{27}H_{45}$, was determined by single crystal X-ray diffraction methods. Cholesteryl isobutyrate crystallized monoclinic space group $P2_1$, with a = 15.115 (8)${\AA}$, b = 9.636 (5)${\AA}$, c = 20.224 (9)${\AA}$, ${\beta}$ = 93.15 (5)$^{\circ}$, z = 4, $D_c = 1.03 g/cm^3 $and Dm= 1.04 g/$cm^3$. The intensity data were measured for the 3417 reflections, within $sin{\theta}/{\lambda} = 0.59{\AA}^{-1}$, using an automatic four-circle diffractometer and graphite monochromated Mo-$K_{\alpha}$ radiation. The structure was solved by fragment search Patterson methods and direct methods and refined by full-matrix least-squares methods. The final R factor was 0.129 for 2984 observed reflections. The two symmetry-independent molecules (A) and (B) are almost fully extended. The molecules are in antiparallel array forming monolayers with thickness $d_{100}$ = 15.2${\AA}$, and molecular long axes are nearly parallel to the [$\bar{1}$01] directions. The two distinct molecules form separate stacks with almost the same orientations, but with differing degrees of steroid overlap. Thers is a close packing of cholesteryl groups within the monolayers. The packing type is similar to those of cholesteryl hexanoate and cholesteryl oleate.

A Study on Characterization and Modeling of Shallow Trench Isolation in Oxide Chemical Mechanical Polishing

  • Kim, Sang-Yong;Chung, Hun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.24-27
    • /
    • 2001
  • The end point of oxide chemical mechanical polishing (CMP) have determined by polishing time calculated from removal rate and target thickness of oxide. This study is about control of oxide removal amounts on the shallow trench isolation (STI) patterned wafers using removal rate and thickness of blanket (non-patterned) wafers. At first, it was investigated the removal properties of PETEOS blanket wafers, and then it was compared with the removal properties and the planarization (step height) as a function of polishing time of the specific STI patterned wafers. We found that there is a relationship between the oxide removal amounts of blanket and patterned wafers. We analyzed this relationship, and the post CMP thickness of patterned wafers could be controlled by removal rate and removal target thickness of blanket wafers. As the result of correlation analysis, we confirmed that there was the strong correlation between patterned and blanket wafer (correlation factor: 0.7109). So, we could confirm the repeatability as applying for STI CMP process from the obtained linear formula. As the result of repeatability test, the differences of calculated polishing time and actual polishing time was about 3.48 seconds. If this time is converted into the thickness, then it is from 104 $\AA$ to 167 $\AA$. It is possible to be ignored because process margin is about 1800 $\AA$.

  • PDF