• Title/Summary/Keyword: Facility safety design

Search Result 508, Processing Time 0.025 seconds

Analysis of Accidents Causes in an Auto-Glass Manufacturing Company using the Comprehensive Human Error Analysis Model (통합적 휴먼에러 분석 모델을 이용한 자동차 유리공장의 사고 원인 분석)

  • Lim, Hyeon-Kyo;Lee, Seung-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.90-95
    • /
    • 2012
  • To prevent similar accidents with the basis of industrial accidents already occurred in industrial plants, it would be possible only after true causes are grasped. Unfortunately, however, most accident investigation carried out with the basis of legal regulation failed to grasp them so that similar accidents have been repeated without cease. This research aimed to find out differences between results from conventional accident investigation and those from human error analysis, and to draw out effective and practical counter-plans against industrial accidents occurred repeatedly in an autoglass manufacturing company. As for analysis, about 110 accident cases that occurred for last 7 years were collected, and by adopting the Comprehensive Human Error Analysis Technique developed by the previous researchers, not direct causes but basic fundamental causes that might induce workers to human errors were sought. In consequence, the result showed that facility factors or environmental factors such as improper layout, mistakes in engineering design, and malfunction of interlock system were authentic major accident causes as opposed to managerial factors such as personal carelessness or failure to wearing personal protective equipments, and/or improper work methods.

The Analysis of Corona Discharge of Surface Flashover Model for Aging Diagnosis of Power Facility (전력설비의 열화 진단을 위한 연면방전 모델에서의 코로나 방전 특성 분석)

  • Pang, Man-Sik;Choi, Jae-Hyeong;Kim, Woo-Jin;Kim, Young-Seok;Kim, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.314-318
    • /
    • 2011
  • Recently, ultrasound, infrared detector, V-I characteristic, gas analysis, UV (ultra-violet rays) camera etc. is used as inspections and diagnoses of the safety of power equipment. Especially, UV camera have attracted a great deal of interest from the view point of easy judgement. UV camera is used corona discharge. One of the most important and difficult problems to be solved filer design, materials and corona discharge. This paper is studied on the temperature characteristics, UV generation and shape analysis and corona pulse count according to the electrode distance and applied voltage. Also, Corona discharge characteristics in air are analyzed using prototype UV camera of Korea. UV generation due to surface discharge of AC is higher than that of DC.

Design and Application of Emergency Blockage System for Engine Part at IPPT and SQT (IPPT, SQT에서의 엔진부 비상정지 시스템 설계 및 운용)

  • 하성업;이중엽;정태규;한상엽
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.44-53
    • /
    • 2003
  • A vertical hot-firing test facility was established to carry out the IPPT(Integrated Propulsion Performance Test) and SQT(Stage Qualification Test) of KSR-III(Korea Sounding Rocket-III). The components for actual launcher were mostly used, hence these tests were carried out under the condition of relatively lower safety margin. To perform hot-firing tests with the maximum safety, an engine emergency blockage system was investigated and applied. An emergency blockage system using combustion chamber pressures and acceleration signals was set up to monitor ignition delay and fail, flame out, propellant feeding status, unstable combustion and excessive structural vibration. With such a system, the test safety could be secured by rapid judgement and follow-up measures, which made IPPT and SQT be safely completed.

Development of Non-Redirective Crash Cushion for Bridge Piers Considering Occupant Safety (탑승자 안전도를 고려한 교각 방호시설물 개발에 관한 연구)

  • Park, Jaehong;Sung, Jung Gon;Nam, Min Gyun;Yun, Duk Geun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.120-126
    • /
    • 2018
  • The traffic accident types are largely classified into vehicle to vehicle accident, vehicle-to-person accident and single-vehicle. Especially, the single-vehicle accident types are severe when the vehicle crashed into road facilities such as bridge, piers, utility poles. The severity of single-vehicle accidents are ten times higher than that of all other accidents types. It is needed to consider to reduce accident severity. This study was conducted to develop crash worthy safety design facility to ensure the vehicle occupant safety. The simulation and the crash tests were conducted for assessment of the safety performance to check the criteria of CC2(Crash Cushion 2) level. THIV(Theoretical Head Impact Velocity) and PHD(Post-impact Head Deceleration) were used to assess occupant impact severity for crashes. The non-redirection collision test conditions for 900 kg and 1,300 kg-head on crash tests, 900 kg-1/4 offset crash tests, 1,300 kg-head on crash test with $15^{\circ}$angle were conducted. The simulation and experiment test result showed that THIV values were below 44 km/h criterion, PHD values were below the 20G. The development non-redirective crash cushion is expected to be used for the fixed object such as bridge piers for assuring occupant safety.

Quantitative Risk Assessment of Mobile LNG Filling Station (이동식 LNG 충전소 정량적 위험성 평가)

  • Jeon, Eun-Gyeong;Choi, Young-Joo;Kim, Pil-Jong;Yu, Chul-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.45-52
    • /
    • 2021
  • The government is converting the fuel for trucks, one of the causes of PM in Korea, form diesel to LNG. Mobile LNG station are being developed to solve the problems of insufficient charging infrastructure and facilitate the spread of LNG fuel. In this study, QRA was used th calculate the CA of the facility for a secure design prior to the development of the mobile LNG station and to predict the individual/societal risk the scenario. As a result, the danger of mobile LNG station was in ALARP.

Risk Assessment for High Capacity Multiport Hydrogen Refueling Station (대용량 멀티포트 동시 충전 기반 수소충전소 안전성 평가 연구)

  • CHOONGHEE JOE;SEUNGKYU KANG;BUSEUNG KIM;KYUNGSIK LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.505-513
    • /
    • 2023
  • Hydrogen infrastructure is expanding. High-capacity hydrogen refueling stations offer advantages because they can refuel a variety of light and heavy-duty vehicles, and multi-port refueling technology is developing to reduce charging time for heavy-duty vehicles. In this study, we suggest directions to lower the risk by analyzing the risk factors for each process involved in the installation of a high-capacity multi-port hydrogen refueling station in Changwon city. We conducted both qualitative and quantitative risk assessments of the equipment to evaluate the station. A hazard and operability study was performed for qualitative risk assessment, and PHAST/SAFETI were used for quantitative risk assessment. Quantitative risk assessment was used to calculate the consequence analysis of the facility to ensure secure design prior to station development and to predict individual and societal risks in various scenarios. As a result, the station's risk level was determined to be as low as reasonably practicable.

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.

Failure Probability Analysis of Concrete Cofferdam Considering the Overflow in Flood Season (홍수시 월류를 고려한 콘크리트 가물막이댐의 파괴확률 산정)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.30-38
    • /
    • 2020
  • In order to construct a dam, the diversion facility such as cofferdam and a diversion tunnel should be installed in advance. And size of a cofferdam depends on type of a main dam. According to the Korea Dam Design Standard, if the main dam is a concrete dam, design flood of the cofferdam is 1~2 years flood frequency. This means that overflow of the cofferdam occurs one time for 1 or 2 years, therefore, stability of the cofferdam should be secured against any overflow problem. In this study, failure probability analysis for the concrete cofferdam is performed considering the overflow. First of all, limit state function of the concrete cofferdam is defined for overturning, sliding and base pressure, and upstream water levels are set as El. 501 m, El. 503 m, El. 505 m, El. 507 m. Also, after literature investigation research, probabilistic characteristics of various random variables are determined, the failure probability of the concrete cofferdam is calculated using the Monte Carlo Simulation. As a result of the analysis, when the upstream water level rises, it means overflow, the failure probability increases rapidly. In particular, the failure probability is largest in case of flood loading condition. It is considered that the high upstream water level causes increase of the upstream water pressure and the uplift pressure on the foundation. In addition, among the overturning, the sliding and the base pressure, the overturing is the major cause for the cofferdam failure considering the overflow.

Analysis of MSGTR-PAFS Accident of the ATLAS using the MARS-KS Code (MARS-KS 코드를 사용한 ATLAS 실험장치의 MSGTR-PAFS 사고 분석)

  • Jeong, Hyunjoon;Kim, Taewan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.74-80
    • /
    • 2021
  • Korea Atomic Energy Research Institute (KAERI) has been operating an integral effects test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), according to APR1400 for transient experimental and design basis accident simulation. Moreover, based on the experimental data, the domestic standard problem (DSP) program has been conducted in Korea to validate system codes. Recently, through DSP-05, the performance of the passive auxiliary feedwater system (PAFS) in the event of multiple steam generator tube rupture (MSGTR) has been analyzed. However, some errors exist in the reference input model distributed for DSP-05. Furthermore, the calculation results of the heat loss correlation for the secondary system presented in the technical report of the reference indicate that a large difference is present in heat loss from the target value. Thus, in this study, the reference model is corrected using the geometric information from the design report and drawings of ATLAS. Additionally, a new heat loss correlation is suggested by fitting the results of the heat loss tests. Herein, MSGTR-PAFS accident analysis is performed using MARS-KS 1.5 with the improved model. The steady-state calculation results do not significantly differ from the experimental values, and the overall physical behavior of the transient state is properly predicted. Particularly, the predicted operating time of PAFS is similar to the experimental results obtained by the modified model. Furthermore, the operating time of PAFS varies according to the heat loss of the secondary system, and the sensitivity analysis results for the heat loss of the secondary system are presented.