• Title/Summary/Keyword: Facial recognition

Search Result 716, Processing Time 0.032 seconds

A case of the rare variant of Klinefelter syndrome 47,XY,i(X)(q10)

  • Song, Seung-Hun;Won, Hyung Jae;Yoon, Tae Ki;Cha, Dong Hyun;Shim, Jeong Yun;Shim, Sung Han
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.4
    • /
    • pp.174-176
    • /
    • 2013
  • Klinefelter syndrome is the most common genetic form of male hypogonadism, but the phenotype becomes evident only after puberty. It is characterized by infertility, small testes, sparse body and facial hair, increased body weight, gynecomastia, increased LH and FSH, and a low level of testosterone. Early recognition and treatment of Klinefelter syndrome can significantly improve the patient's quality of life and prevent serious consequences. Here, we report an infertile man with a rare variant of Klinefelter syndrome with a 47, XY, i(X)(q10) karyotype.

Face Detection using Template Matching and Ellipse Fitting (템플릿과 타원정보를 이용한 얼굴검출)

  • Jung, Tae-Yun;Kim, Hyun-Sool;Kang, Woo-Seok;Park, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1472-1475
    • /
    • 1999
  • This paper proposes a new detection method of human faces in grey scale images with cluttered background using a facial template and elliptical structure of the human head. Face detection technique can be applied in many areas of image processing such as face recognition, composition and computer graphics, etc. Until now, many researches about face detection have been done, and applications in more complicated conditions are increasing. The existing technique proposed by Sirohey shows relatively good performance in image with cluttered background, but can apply only to image with one face and needs much computation time. The proposed method is designed to reduce complexity and be applied even in the image with several faces by introducing template matching as preprocess. The results show that the proposed method produces more correct detection rate and needs less computation time than the existing one.

  • PDF

Facial Expression Recognition without Neutral Expressions (중립표정에 무관한 얼굴표정 인식)

  • Shin Young-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.301-303
    • /
    • 2006
  • 본 논문은 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며, 단위분산값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 하였다. 본 실험 결과는 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들의 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정인식을 가능하게 하였다.

  • PDF

Facial Expression Recognition using Model-based Feature Extraction in Image Sequence (동영상에서의 모델기반 특징추출을 이용한 얼굴 표정인식)

  • Park Mi-Ae;Choi Sung-In;Im Don-Gak;Ko Je-Pil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.343-345
    • /
    • 2006
  • 본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.

  • PDF

Face Region Extraction for the Facial Expression Recognition System (얼굴 표정 인식 시스템을 위한 얼굴 영역 추출)

  • Lim Ju-Hyuk;Song Kun-Woen
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.903-906
    • /
    • 2004
  • 본 논문에서는 얼굴 표정 인식 시스템을 위한 얼굴 영역 추출 알고리즘을 제안한다. 이는 입력 영상으로부터 얼굴 후보 영역을 추출하고, 추출된 얼굴 후보 영역에서 눈의 위치를 정확히 추출한다. 그리고 추출된 눈 영역들의 정보와 타원 방정식을 이용하여 최종 얼굴 영역을 추출한다. 얼굴 후보 영역은 HSI 칼라 좌표계에 기반한 적응적 피부색 구간 범위를 설정하여 추출하였다. 추출된 얼굴 후보 영역에서의 눈 영역 추출을 위해 밝기 정보를 이용하여 먼저 눈의 후보 화소들을 추출하고, 레이블링 과정을 통하여 영역별로 그룹화하였다. 각 후보 영역들의 화소 수, 가로세로비 및 위치 정보를 고려하여 최종 눈 영역을 추출하였다. 추출된 두 눈 영역에서 무게중심을 구하고 이를 이용하여 장축과 단축을 설정하여 타원방정식을 이용 최종 얼굴 영역을 추출하였다. 제안된 알고리즘은 조명 변화, 다양한 배경들을 가지는 얼굴 영상에서도 정확히 얼굴 영역을 추출할 수 있었다.

  • PDF

COSA : Cursor Control System by EEG (COSA : 뇌파를 이용한 방향 제어 시스템)

  • Shin, Dong-Sun;Kim, Eung-Soo
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.801-804
    • /
    • 2002
  • 뇌기능 연구 수단으로 널리 사용되고 있는 뇌파의 시각적 분석 및 정량적 분석시 오차를 증가시키는 원인이 되어 왔던 잡파(artifact)를 제거 대상이 아닌 제어 신호로써 활용한다. 본 연구에서는 다양한 잡파 중 뇌파 측정시 가장 잘 포함되고, 시각적으로 쉽게 구별이 가능한 안면근(facial muscle) 신호를 이용한다. 측정된 뇌파에 파워스펙트럼(power spectrum)을 적응하여 뇌파를 분석하고, Backpropagation 알고리즘을 이용하여 전 처리된 뇌파를 인식하는 2 채널 실시간 인식(recognition) 및 분류(classification) 시스템을 구현한다. 이와 같이 구현된 시스템을 이용하여 5 방향(상, 하, 좌, 우, 정지) 제어를 실시함으로써 뇌-컴퓨터간 통신을 통한 방향제어 시스템을 구현하였다.

  • PDF

A Study on Face Recognition using Hierarchical Classification of Facial Principal Component (얼굴 주성분의 계층적 분류를 이용한 얼굴인식에 관한 연구)

  • Choi, Jae-Young;Kim, Nak-Bin
    • Annual Conference of KIPS
    • /
    • 2002.11a
    • /
    • pp.649-652
    • /
    • 2002
  • PCA 방법은 입력 차원을 수학적으로 줄일 수 있는 장점 때문에 패턴인식 부분에서 널리쓰이고 있다. 얼굴인식에서의 PCA는 학습 패턴의 분산을 최대로 하는 기저 벡터들인 고유얼굴을 만들어 얼굴인식이 필요한 영상을 이 기저 벡터에 투사시켜 이때 나온 인자들과 원래 각 개인의 대표 인자값과의 거리 비교로 얼굴을 인식하는 방법이다. 그러나 조명등의 영향에 매우 민감하며 거리값으로 얼굴을 인식하기 때문에 다양한 변화에 따라 오인식률이 높아진다. 이는 인식률을 높이고자 임계값을 높게 설정하는 과정에서 발생하는 오류이며, 이를 방지하기 위해 임계치를 낮게 설정하면 오거부율이 높아진다. 이에 본 연구에서는 PCA에 입력되는 패턴들을 사전에 비교, 분류하여 PCA 연산시에 분산과 변위를 최대한으로 가질 수 있도록 하였다. 그러하여, 기존의 PCA보다 상당히 낮은 임계값으로도 오거부율의 증가를 막았으며, 낮은 임계값 설정으로 인하여 오인식률을 낮추는 결과를 얻을 수 있었다. 이는 기존의 PCA 방법을 사용하는 인식시스템에서 종종 발생하는 허가되지 않아야 하는 외부인을 인증시키는 사례를 줄일 수 있다.

  • PDF

Biosign Recognition based on the Soft Computing Techniques with application to a Rehab -type Robot

  • Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.29.2-29
    • /
    • 2001
  • For the design of human-centered systems in which a human and machine such as a robot form a human-in system, human-friendly interaction/interface is essential. Human-friendly interaction is possible when the system is capable of recognizing human biosigns such as5 EMG Signal, hand gesture and facial expressions so the some humanintention and/or emotion can be inferred and is used as a proper feedback signal. In the talk, we report our experiences of applying the Soft computing techniques including Fuzzy, ANN, GA and rho rough set theory for efficiently recognizing various biosigns and for effective inference. More specifically, we first observe characteristics of various forms of biosigns and propose a new way of extracting feature set for such signals. Then we show a standardized procedure of getting an inferred intention or emotion from the signals. Finally, we present examples of application for our model of rehabilitation robot named.

  • PDF

Emotion Recognition Method of Facial Image using PCA (PCA을 이용한 얼굴표정의 감정인식 방법)

  • Kim, Ho-Deok;Yang, Hyeon-Chang;Park, Chang-Hyeon;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.11-14
    • /
    • 2006
  • 얼굴 표정인식에 관한 연구에서 인식 대상은 대부분 얼굴의 정면 정지 화상을 가지고 연구를 한다. 얼굴 표정인식에 큰 영향을 미치는 대표적인 부위는 눈과 입이다. 그래서 표정 인식 연구자들은 얼굴 표정인식 연구에 있어서 눈, 눈썹, 입을 중심으로 표정 인식이나 표현 연구를 해왔다. 그러나 일상생활에서 카메라 앞에 서는 대부분의 사람들은 눈동자의 빠른 변화의 인지가 어렵고, 많은 사람들이 안경을 쓰고 있다. 그래서 본 연구에서는 눈이 가려진 경우의 표정 인식을 Principal Component Analysis (PCA)를 이용하여 시도하였다.

  • PDF

An Overview on Method of Recognition of Facial Expression (얼굴표정 인식방법론에 관한 검토)

  • Kim, Dae-Young;Sin, Do-Seong;Lee, Chil-Woo
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.326-329
    • /
    • 2012
  • 이 논문에서는 사람 얼굴 표정을 인식하기 위한 여러 가지 방법론들을 비교분석하였다. 사람얼굴표정을 인식할 때 특징 추출 방법에는 크게 AAM(Active Appearance Model) 기반 방법과 비 AAM 기반 방법이 있었다. 추출된 특징에 대한 학습 및 인식에도 신경망, SVM(Support Vector Machine), 사후확률, 기타 변형 알고리즘을 이용하는 경우가 많았다. 인식되는 표정에는 크게 행복, 분노, 슬픔, 놀람에 대한 표정 인식이 주를 이루었고 추가적으로 역겨움, 두려움, 졸음, 윙크까지도 인식하려는 시도가 있었으나 인식률이 그다지 높지 않았다. 또한 현재 나와 있는 표정인식방법들은 얼굴표정을 과장되게 지을 때에만 인식할 수 있다는 한계가 있었다. 따라서 사람들이 인식할 수 있는 미세한 표정변화를 컴퓨터가 인식하기 위해서 더욱 강건한 특징추출과 새로운 표정분류에 대한 정의 방법이 필요함을 알 수 있었다.