Klinefelter syndrome is the most common genetic form of male hypogonadism, but the phenotype becomes evident only after puberty. It is characterized by infertility, small testes, sparse body and facial hair, increased body weight, gynecomastia, increased LH and FSH, and a low level of testosterone. Early recognition and treatment of Klinefelter syndrome can significantly improve the patient's quality of life and prevent serious consequences. Here, we report an infertile man with a rare variant of Klinefelter syndrome with a 47, XY, i(X)(q10) karyotype.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.48
no.11
/
pp.1472-1475
/
1999
This paper proposes a new detection method of human faces in grey scale images with cluttered background using a facial template and elliptical structure of the human head. Face detection technique can be applied in many areas of image processing such as face recognition, composition and computer graphics, etc. Until now, many researches about face detection have been done, and applications in more complicated conditions are increasing. The existing technique proposed by Sirohey shows relatively good performance in image with cluttered background, but can apply only to image with one face and needs much computation time. The proposed method is designed to reduce complexity and be applied even in the image with several faces by introducing template matching as preprocess. The results show that the proposed method produces more correct detection rate and needs less computation time than the existing one.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.301-303
/
2006
본 논문은 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며, 단위분산값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 하였다. 본 실험 결과는 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들의 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정인식을 가능하게 하였다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.343-345
/
2006
본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.
본 논문에서는 얼굴 표정 인식 시스템을 위한 얼굴 영역 추출 알고리즘을 제안한다. 이는 입력 영상으로부터 얼굴 후보 영역을 추출하고, 추출된 얼굴 후보 영역에서 눈의 위치를 정확히 추출한다. 그리고 추출된 눈 영역들의 정보와 타원 방정식을 이용하여 최종 얼굴 영역을 추출한다. 얼굴 후보 영역은 HSI 칼라 좌표계에 기반한 적응적 피부색 구간 범위를 설정하여 추출하였다. 추출된 얼굴 후보 영역에서의 눈 영역 추출을 위해 밝기 정보를 이용하여 먼저 눈의 후보 화소들을 추출하고, 레이블링 과정을 통하여 영역별로 그룹화하였다. 각 후보 영역들의 화소 수, 가로세로비 및 위치 정보를 고려하여 최종 눈 영역을 추출하였다. 추출된 두 눈 영역에서 무게중심을 구하고 이를 이용하여 장축과 단축을 설정하여 타원방정식을 이용 최종 얼굴 영역을 추출하였다. 제안된 알고리즘은 조명 변화, 다양한 배경들을 가지는 얼굴 영상에서도 정확히 얼굴 영역을 추출할 수 있었다.
뇌기능 연구 수단으로 널리 사용되고 있는 뇌파의 시각적 분석 및 정량적 분석시 오차를 증가시키는 원인이 되어 왔던 잡파(artifact)를 제거 대상이 아닌 제어 신호로써 활용한다. 본 연구에서는 다양한 잡파 중 뇌파 측정시 가장 잘 포함되고, 시각적으로 쉽게 구별이 가능한 안면근(facial muscle) 신호를 이용한다. 측정된 뇌파에 파워스펙트럼(power spectrum)을 적응하여 뇌파를 분석하고, Backpropagation 알고리즘을 이용하여 전 처리된 뇌파를 인식하는 2 채널 실시간 인식(recognition) 및 분류(classification) 시스템을 구현한다. 이와 같이 구현된 시스템을 이용하여 5 방향(상, 하, 좌, 우, 정지) 제어를 실시함으로써 뇌-컴퓨터간 통신을 통한 방향제어 시스템을 구현하였다.
PCA 방법은 입력 차원을 수학적으로 줄일 수 있는 장점 때문에 패턴인식 부분에서 널리쓰이고 있다. 얼굴인식에서의 PCA는 학습 패턴의 분산을 최대로 하는 기저 벡터들인 고유얼굴을 만들어 얼굴인식이 필요한 영상을 이 기저 벡터에 투사시켜 이때 나온 인자들과 원래 각 개인의 대표 인자값과의 거리 비교로 얼굴을 인식하는 방법이다. 그러나 조명등의 영향에 매우 민감하며 거리값으로 얼굴을 인식하기 때문에 다양한 변화에 따라 오인식률이 높아진다. 이는 인식률을 높이고자 임계값을 높게 설정하는 과정에서 발생하는 오류이며, 이를 방지하기 위해 임계치를 낮게 설정하면 오거부율이 높아진다. 이에 본 연구에서는 PCA에 입력되는 패턴들을 사전에 비교, 분류하여 PCA 연산시에 분산과 변위를 최대한으로 가질 수 있도록 하였다. 그러하여, 기존의 PCA보다 상당히 낮은 임계값으로도 오거부율의 증가를 막았으며, 낮은 임계값 설정으로 인하여 오인식률을 낮추는 결과를 얻을 수 있었다. 이는 기존의 PCA 방법을 사용하는 인식시스템에서 종종 발생하는 허가되지 않아야 하는 외부인을 인증시키는 사례를 줄일 수 있다.
For the design of human-centered systems in which a human and machine such as a robot form a human-in system, human-friendly interaction/interface is essential. Human-friendly interaction is possible when the system is capable of recognizing human biosigns such as5 EMG Signal, hand gesture and facial expressions so the some humanintention and/or emotion can be inferred and is used as a proper feedback signal. In the talk, we report our experiences of applying the Soft computing techniques including Fuzzy, ANN, GA and rho rough set theory for efficiently recognizing various biosigns and for effective inference. More specifically, we first observe characteristics of various forms of biosigns and propose a new way of extracting feature set for such signals. Then we show a standardized procedure of getting an inferred intention or emotion from the signals. Finally, we present examples of application for our model of rehabilitation robot named.
Kim, Ho-Deok;Yang, Hyeon-Chang;Park, Chang-Hyeon;Sim, Gwi-Bo
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.11-14
/
2006
얼굴 표정인식에 관한 연구에서 인식 대상은 대부분 얼굴의 정면 정지 화상을 가지고 연구를 한다. 얼굴 표정인식에 큰 영향을 미치는 대표적인 부위는 눈과 입이다. 그래서 표정 인식 연구자들은 얼굴 표정인식 연구에 있어서 눈, 눈썹, 입을 중심으로 표정 인식이나 표현 연구를 해왔다. 그러나 일상생활에서 카메라 앞에 서는 대부분의 사람들은 눈동자의 빠른 변화의 인지가 어렵고, 많은 사람들이 안경을 쓰고 있다. 그래서 본 연구에서는 눈이 가려진 경우의 표정 인식을 Principal Component Analysis (PCA)를 이용하여 시도하였다.
이 논문에서는 사람 얼굴 표정을 인식하기 위한 여러 가지 방법론들을 비교분석하였다. 사람얼굴표정을 인식할 때 특징 추출 방법에는 크게 AAM(Active Appearance Model) 기반 방법과 비 AAM 기반 방법이 있었다. 추출된 특징에 대한 학습 및 인식에도 신경망, SVM(Support Vector Machine), 사후확률, 기타 변형 알고리즘을 이용하는 경우가 많았다. 인식되는 표정에는 크게 행복, 분노, 슬픔, 놀람에 대한 표정 인식이 주를 이루었고 추가적으로 역겨움, 두려움, 졸음, 윙크까지도 인식하려는 시도가 있었으나 인식률이 그다지 높지 않았다. 또한 현재 나와 있는 표정인식방법들은 얼굴표정을 과장되게 지을 때에만 인식할 수 있다는 한계가 있었다. 따라서 사람들이 인식할 수 있는 미세한 표정변화를 컴퓨터가 인식하기 위해서 더욱 강건한 특징추출과 새로운 표정분류에 대한 정의 방법이 필요함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.