• 제목/요약/키워드: Facial feature

검색결과 517건 처리시간 0.029초

얼굴피부색, 얼굴특징벡터 및 안면각 정보를 이용한 실시간 자동얼굴검출 및 인식시스템 (Real-Time Automatic Human Face Detection and Recognition System Using Skin Colors of Face, Face Feature Vectors and Facial Angle Informations)

  • 김영일;이응주
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.491-500
    • /
    • 2002
  • 본 논문에서는 칼라 얼굴 영상으로부터 피부색 정보, 얼굴의 기하학적 특징벡터 및 안면각 정보를 이용한 실시간 얼굴검출 및 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 HSI 칼라좌표계상의 얼굴 피부색 정보와 얼굴 에지 정보를 함께 이용함으로써 얼굴 영역 검출 효율을 개선하였다. 또한 추출된 얼굴 영역으로부터 얼굴인식율 개선을 위해 얼굴 특징자들을 추출하고 추출된 얼굴 특징자들의 기하학적 관계로 구성된 얼굴 특징벡터와 얼굴 안면각 정보를 사용하여 얼굴 인식율을 개선하였다. 실험에서는 제안한 방법이 기존의 방법에 비해 얼굴 영역 검출율 뿐만 아니라 얼굴 인식율도 개선되었음을 알 수 있다.

iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출 (Improvement of Active Shape Model for Detecting Face Features in iOS Platform)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

웨이브릿 영역에서 기하학적 특징과 PCA/LDA를 사용한 얼굴 인식 방법 (Face Recognition Method using Geometric Feature and PCA/LDA in Wavelet Domain)

  • 송영준;김영길
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.107-113
    • /
    • 2004
  • 본 논문은 얼굴의 기하학적인 특징과 웨이브릿 변환을 사용한 PCA/LDA 복합 방법을 제안하여 얼굴 인식 시스템의 성능을 향상시켰다. 기존의 PCA/LDA 방법은 형태적인 분산의 정도에 따라 유사도를 측정하였기 때문에 얼굴 윤곽선을 정확하게 반영하지 못하였다. 이 단점을 극복하기 위하여 본 논문에서는 눈과 입사이의 거리를 측정하여 질의영상과 훈련영상에서 큰 차이가 있을 경우에는 얼굴내의 눈, 코, 턱 각각의 영역에 대한 에너지를 특징 벡터로 사용하여 기즌의 PCA/LDA로 계산한 유사도를 재산정하였다. 본 논문에서 제안한 방법을 이용해서 ORL 데이터베이스의 400개 얼굴 영상에 대해 모의 실험한 결과 기존의 PCA/LDA 방법보다 약 4%의 인식률 향상이 있음을 보였다

  • PDF

A Noisy-Robust Approach for Facial Expression Recognition

  • Tong, Ying;Shen, Yuehong;Gao, Bin;Sun, Fenggang;Chen, Rui;Xu, Yefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2124-2148
    • /
    • 2017
  • Accurate facial expression recognition (FER) requires reliable signal filtering and the effective feature extraction. Considering these requirements, this paper presents a novel approach for FER which is robust to noise. The main contributions of this work are: First, to preserve texture details in facial expression images and remove image noise, we improved the anisotropic diffusion filter by adjusting the diffusion coefficient according to two factors, namely, the gray value difference between the object and the background and the gradient magnitude of object. The improved filter can effectively distinguish facial muscle deformation and facial noise in face images. Second, to further improve robustness, we propose a new feature descriptor based on a combination of the Histogram of Oriented Gradients with the Canny operator (Canny-HOG) which can represent the precise deformation of eyes, eyebrows and lips for FER. Third, Canny-HOG's block and cell sizes are adjusted to reduce feature dimensionality and make the classifier less prone to overfitting. Our method was tested on images from the JAFFE and CK databases. Experimental results in L-O-Sam-O and L-O-Sub-O modes demonstrated the effectiveness of the proposed method. Meanwhile, the recognition rate of this method is not significantly affected in the presence of Gaussian noise and salt-and-pepper noise conditions.

Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식 (Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers)

  • 장길진;조아라;박정식;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-146
    • /
    • 2014
  • 본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.

FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발 (Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.562-567
    • /
    • 2009
  • 얼굴 표정은 사람의 감정을 전달하는 핵심 메커니즘으로 이를 적절하게 활용할 경우 Robotics의 HRI(Human Robot Interface)와 같은 Human Computer Interaction에서 큰 역할을 수행할 수 있다. 이는 HCI(Human Computing Interface)에서 사용자의 감정 상태에 대응되는 다양한 반응을 유도할 수 있으며, 이를 통해 사람의 감정을 통해 로봇과 같은 서비스 에이전트가 사용자에게 제공할 적절한 서비스를 추론할 수 있도록 하는 핵심요소가 된다. 본 논문에서는 얼굴표정에서의 감정표현을 인식하기 위한 방법으로 FACS(Facial Action Coding System)와 AAM(Active Appearance Model)을 이용한 특징 추출과 Bayesian Network 기반 표정 추론 기법이 융합된 얼굴표정 인식 시스템의 개발에 대한 내용을 제시한다.

Harmony Search 알고리즘 기반 HMM 구조 최적화에 의한 얼굴 정서 인식 시스템 개발 (Development of Facial Emotion Recognition System Based on Optimization of HMM Structure by using Harmony Search Algorithm)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.395-400
    • /
    • 2011
  • 본 논문에서는 얼굴 표정에서 나타나는 동적인 정서상태 변화를 고려한 얼굴 영상 기반 정서 인식 연구를 제안한다. 본 연구는 얼굴 영상 기반 정서적 특징 검출 및 분석 단계와 정서 상태 분류/인식 단계로 구분할 수 있다. 세부 연구의 구성 중 첫 번째는 Facial Action Units (FAUs)과 결합한 Active Shape Model (ASM)을 이용하여 정서 특징 영역 검출 및 분석기법의 제안이며, 두 번째는 시간에 따른 정서 상태의 동적 변화를 고려한 정확한 인식을 위하여 Hidden Markov Model(HMM) 형태의 Dynamic Bayesian Network를 사용한 정서 상태 분류 및 인식기법의 제안이다. 또한, 최적의 정서적 상태 분류를 위한 HMM의 파라미터 학습 시 Harmony Search (HS) 알고리즘을 이용한 휴리스틱 최적화 과정을 적용하였으며, 이를 통하여 동적 얼굴 영상 변화를 기반으로 하는 정서 상태 인식 시스템을 구성하고 그 성능의 향상을 도모하였다.

Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출 (Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm)

  • 신영숙
    • 인지과학
    • /
    • 제14권1호
    • /
    • pp.10-10
    • /
    • 2003
  • 본 논문은 Gabor 웨이브렛 변환을 이용하여 무표정을 포함한 표정영상에서 얼굴의 주요 요소들의 경계선을 추출한 후, FCM 군집화 알고리즘을 적용하여 무표정 영상에서 저차원의 대표적인 특징점을 추출한다. 무표정 영상의 특징점들은 표정영상의 특징점들을 추출하기 위한 템플릿으로 사용되어지며, 표정영상의 특징점 추출은 무표정 영상의 특징점과 동적 연결모형을 이용하여 개략적인 정합과 정밀한 정합 과정의 두단계로 이루어진다. 본 논문에서는 Gabor 웨이브렛과 FCM 군집화 알고리즘을 기반으로 동적 연결모형을 이용하여 표정영상에서 특징점들을 자동으로 추출할 수 있음을 제시한다. 본 연구결과는 자동 특징추출을 이용한 차원모형기반 얼굴 표정인식[1]에서 얼굴표정의 특징점을 자동으로 추출하는 데 적용되었다.

사각형 특징 기반 분류기와 클래스 매칭을 이용한 실시간 얼굴 검출 및 인식 (Real Time Face Detection and Recognition using Rectangular Feature based Classifier and Class Matching Algorithm)

  • 김종민;강명아
    • 한국콘텐츠학회논문지
    • /
    • 제10권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 본 논문은 사각형 특징 기반 분류기를 제안하여 실시간으로 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘을 구현하고자 한다. 제안한 알고리즘은 특징 생성, 분류기 학습, 실시간 얼굴 영역 검출의 세 단계로 구성된다. 특징 생성은 제안된 5개의 사각형 특징으로 특징 집합을 구성하며, SAT(Summed-Area Tables)를 이용하여 특징 값을 효율적으로 계산한다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 분류기를 계층적으로 생성한다. 또한 중요한 얼굴 패턴은 다음 레벨에 반복적으로 적용함으로써 우수한 검출 성능을 가진다. 실시간 얼굴 영역 검출은 생성된 사각형 특징 기반 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 또한 얼굴 영역을 검출한 영역을 인식의 입력 영상으로 사용하여 PCA와 KNN 알고리즘을 이용하여 기존의 매칭 방법인 Point to point 방법이 아닌 Class to Class 방식을 이용하여 인식률을 향상시켰다.

적외선 영상에서의 얼굴 영역 자동 추적 (Facial Region Extraction in an Infrared Image)

  • 신승원;김경섭;윤태호;한명희;김인영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.57-59
    • /
    • 2005
  • In our study, the automatic tracking algorithm of a human face is proposed by utilizing the thermal properties and 2nd momented geometrical feature of an infrared image. First, the facial candidates are estimated by restricting the certain range of thermal values, and the spurious blobs cleaning algorithm is applied to track the refined facial region in an infrared image.

  • PDF