• 제목/요약/키워드: Facial Features Detection

검색결과 138건 처리시간 0.021초

Machine Learning-Based Reversible Chaotic Masking Method for User Privacy Protection in CCTV Environment

  • Jimin Ha;Jungho Kang;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.767-777
    • /
    • 2023
  • In modern society, user privacy is emerging as an important issue as closed-circuit television (CCTV) systems increase rapidly in various public and private spaces. If CCTV cameras monitor sensitive areas or personal spaces, they can infringe on personal privacy. Someone's behavior patterns, sensitive information, residence, etc. can be exposed, and if the image data collected from CCTV is not properly protected, there can be a risk of data leakage by hackers or illegal accessors. This paper presents an innovative approach to "machine learning based reversible chaotic masking method for user privacy protection in CCTV environment." The proposed method was developed to protect an individual's identity within CCTV images while maintaining the usefulness of the data for surveillance and analysis purposes. This method utilizes a two-step process for user privacy. First, machine learning models are trained to accurately detect and locate human subjects within the CCTV frame. This model is designed to identify individuals accurately and robustly by leveraging state-of-the-art object detection techniques. When an individual is detected, reversible chaos masking technology is applied. This masking technique uses chaos maps to create complex patterns to hide individual facial features and identifiable characteristics. Above all, the generated mask can be reversibly applied and removed, allowing authorized users to access the original unmasking image.

로컬 와핑 및 윤곽선 추출을 이용한 캐리커처 제작 (Caricaturing using Local Warping and Edge Detection)

  • 최성진;배현;김성신;우광방
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.403-408
    • /
    • 2003
  • 캐리커처의 일반적인 의미는 어떤 사람이나 사물의 특징을 추출하여 익살스럽게 풍자한 그림이나 글이다. 다시 말해, 캐리커처는 사람의 얼굴에서 특징을 잡아 과장하거나 왜곡하여 그린 데생이라고 한다. 컴퓨터를 이용한 기존의 캐리커처 제작 방법으로는, 입력 이미지 좌표의 통계적인 차이 값을 이용하는 PICASSO 시스템 방법, 제작자의 애매한 느낌을 퍼지 논리를 이용하여 표현하는 방법, 이미지론 와핑하는 방법, 여러 단계의 벡터 필드 변환을 이용하는 방법 등이 연구되어 왔다. 본 논문에서는 실시간 또는 준비된 영상을 입력으로 받아 저장한 후, 네 단계의 과정으로 처리한 후 최종적으로 캐리커처 된 이미지를 생성하게 된다. 각 단계별 처리 내용으로는 첫 번째 단계에서는 영상에서 얼굴을 검출하고 두 번째 단계에서는 특정 얼굴부위의 기하학적 정보를 좌표 값으로 추출한다. 세 번째 단계에서는 전 단계에서 얻은 좌표 값으로 로컬 와핑 기법을 이용하여 영상을 변환한다. 네 번째 단계에서는 변형된 영상으로 퍼지 논리를 이용하여 보다 개선된 윤곽선 이미지로 변환하여 캐리커처 이미지를 얻는다. 본 논문에서는 영상 인식, 변환 및 윤곽선 검출 및 등의 여러 가지 영상 처리 기법을 이용하여 기존의 캐리커처 제작 방식보다 간단하고, 복잡한 연산 과정이 없는 캐리커처 제작 시스템을 구현하였다.

Autism Spectrum Disorder Detection in Children using the Efficacy of Machine Learning Approaches

  • Tariq Rafiq;Zafar Iqbal;Tahreem Saeed;Yawar Abbas Abid;Muneeb Tariq;Urooj Majeed;Akasha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.179-186
    • /
    • 2023
  • For the future prosperity of any society, the sound growth of children is essential. Autism Spectrum Disorder (ASD) is a neurobehavioral disorder which has an impact on social interaction of autistic child and has an undesirable effect on his learning, speaking, and responding skills. These children have over or under sensitivity issues of touching, smelling, and hearing. Its symptoms usually appear in the child of 4- to 11-year-old but parents did not pay attention to it and could not detect it at early stages. The process to diagnose in recent time is clinical sessions that are very time consuming and expensive. To complement the conventional method, machine learning techniques are being used. In this way, it improves the required time and precision for diagnosis. We have applied TFLite model on image based dataset to predict the autism based on facial features of child. Afterwards, various machine learning techniques were trained that includes Logistic Regression, KNN, Gaussian Naïve Bayes, Random Forest and Multi-Layer Perceptron using Autism Spectrum Quotient (AQ) dataset to improve the accuracy of the ASD detection. On image based dataset, TFLite model shows 80% accuracy and based on AQ dataset, we have achieved 100% accuracy from Logistic Regression and MLP models.

상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발 (Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware)

  • 김송국;이필규
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.175-182
    • /
    • 2020
  • 비접촉식 시선추적 기술은 인간과 컴퓨터간의 인터페이스로서 장애가 있는 사람들에게 핸즈프리 통신을 제공하며, 최근 코로나 바이러스 등으로 인한 비접촉시스템에도 중요한 역할을 할 것으로 기대된다. 따라서 본 논문에서는 인간 중심의 상호 작용을 위한 상황인식 다중영역 분류기 및 ASSL 알고리즘을 기반으로 한 사용자 인터페이스 기술을 개발한다. 이전의 AdaBoost 알고리즘은 안구 특징 사이의 공간적 맥락 관계를 이용할 수 없기 때문에 눈의 커서 포인팅 추정을 위한 안면 추적에서 충분히 신뢰할 수 있는 성능을 제공 할 수 없다. 따라서 본 논문에서는 효율적인 비접촉식 시선 추적 및 마우스 구현을 위한 눈 영역의 상황기반 AdaBoost 다중 영역 분류기를 제시한다. 제안된 방식은 여러 시선 기능을 감지, 추적 및 집계하여 시선을 평가하고 온 스크린 커서 기반의 능동 및 반 감독 학습을 조정한다. 이는 눈 위치에 성공적으로 사용되었으며 눈 특징을 감지하고 추적하는 데에도 사용할 수 있다. 사용자의 시선을 따라 컴퓨터 커서를 제어하며 칼만 필터를 이용하여 실시간으로 추적하며, 가우시안 모델링을 적용함으로써 후처리하였다. Fits law에 의해 실험하였으며, 랜덤하게 대상객체를 생성하여 실시간으로 시선추적성능을 분석하였다. 제안하는 상황인식을 기반 인식기를 통하여 비접촉 인터페이스로서의 활용이 높아질 것이다.

Classification of Three Different Emotion by Physiological Parameters

  • Jang, Eun-Hye;Park, Byoung-Jun;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • 대한인간공학회지
    • /
    • 제31권2호
    • /
    • pp.271-279
    • /
    • 2012
  • Objective: This study classified three different emotional states(boredom, pain, and surprise) using physiological signals. Background: Emotion recognition studies have tried to recognize human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 122 college students participated in this experiment. Three different emotional stimuli were presented to participants and physiological signals, i.e., EDA(Electrodermal Activity), SKT(Skin Temperature), PPG(Photoplethysmogram), and ECG (Electrocardiogram) were measured for 1 minute as baseline and for 1~1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state and 27 features were extracted from these signals. Statistical analysis for emotion classification were done by DFA(discriminant function analysis) (SPSS 15.0) by using the difference values subtracting baseline values from the emotional state. Results: The result showed that physiological responses during emotional states were significantly differed as compared to during baseline. Also, an accuracy rate of emotion classification was 84.7%. Conclusion: Our study have identified that emotions were classified by various physiological signals. However, future study is needed to obtain additional signals from other modalities such as facial expression, face temperature, or voice to improve classification rate and to examine the stability and reliability of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion recognition. Also, it can be useful in developing an emotion theory, or profiling emotion-specific physiological responses as well as establishing the basis for emotion recognition system in human-computer interaction.

A young child of anti-NMDA receptor encephalitis presenting with epilepsia partialis continua: the first pediatric case in Korea

  • Kim, Eun-Hee;Kim, Yeo Jin;Ko, Tae-Sung;Yum, Mi-Sun;Lee, Jun Hwa
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.133-138
    • /
    • 2016
  • Anti-N-methyl D-aspartate receptor (anti-NMDAR) encephalitis, recently recognized as a form of paraneoplastic encephalitis, is characterized by a prodromal phase of unspecific illness with fever that resembles a viral disease. The prodromal phase is followed by seizures, disturbed consciousness, psychiatric features, prominent abnormal movements, and autonomic imbalance. Here, we report a case of anti-NMDAR encephalitis with initial symptoms of epilepsia partialis continua in the absence of tumor. Briefly, a 3-year-old girl was admitted to the hospital due to right-sided, complex partial seizures without preceding febrile illness. The seizures evolved into epilepsia partialis continua and were accompanied by epileptiform discharges from the left frontal area. Three weeks after admission, the patient's seizures were reduced with antiepileptic drugs; however, she developed sleep disturbances, cognitive decline, noticeable oro-lingual-facial dyskinesia, and choreoathetoid movements. Anti-NMDAR encephalitis was confirmed by positive detection of NMDAR antibodies in the patient's serum and cerebrospinal fluid, and her condition slowly improved with immunoglobulin, methylprednisolone, and rituximab. At present, the patient is no longer taking multiple antiepileptic or antihypertensive drugs. Moreover, the patient showed gradual improvement of motor and cognitive function. This case serves as an example that a diagnosis of anti-NMDAR encephalitis should be considered when children with uncontrolled seizures develop dyskinesias without evidence of malignant tumor. In these cases, aggressive immunotherapies are needed to improve the outcome of anti-NMDAR encephalitis.

한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구 (Research on Generative AI for Korean Multi-Modal Montage App)

  • 임정현;차경애;고재필;홍원기
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2024
  • 멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.

헤르페스 바이러스 감염으로 발생한 대식 세포 활성 증후군을 첫 증상으로 한 소아 전신 홍반 루푸스 (Macrophage Activation Syndrome Triggered by Herpes Viral Infection as the Presenting Manifestation of Juvenile Systemic Lupus Erythematosus)

  • 노지혜;정도영;전인수;김황민
    • Pediatric Infection and Vaccine
    • /
    • 제22권3호
    • /
    • pp.210-215
    • /
    • 2015
  • 대식세포 활성 증후군(MAS, Macrophage activation syndrome)은 전신 홍반성 루푸스(SLE, systemic lupus erythematous) 환자에서 감염에 의해 나타날 수 있는 드문 합병증이다. MAS는 기저의 자가면역질환의 임상양상과 유사하게 나타나거나 혹은 감염성 합병증과 혼돈될 수 있어 감별에 주의 하여야 한다. 14세 여환이 2주간 지속되는 발열과 통증을 동반하는 얼굴의 피부 발진을 주소로 내원하였다. 피부 발진과 간비대, 범혈구 감소증, aspartate aminotransferase, lactate dehydrogenase, 혈청 ferritin이 상승하여, MAS를 의심하였다. 피부 병변과 항핵체 양성, C3와 C4의 감소, 간접 쿰스검사 양성으로 SLE를 진단하였다. 따라서 본 증례는 MAS가 HSV에 의하여 촉발된 것을, SLE의 첫 증상으로서 나타낸 증례로서, 촉발 요인 및 기저질환을 치료함으로써 중증의 합병증 없이 호전되었다.