• Title/Summary/Keyword: Facial Expression Recognition (FER)

Search Result 13, Processing Time 0.02 seconds

Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition (감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계)

  • Og, Yu-Seon;Cho, Woo-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.613-617
    • /
    • 2021
  • According to the growth of the service industry, stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, insufficient substantial protection systems for emotional workers emphasizes the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers.

  • PDF

Analysis of Understanding Using Deep Learning Facial Expression Recognition for Real Time Online Lectures (딥러닝 표정 인식을 활용한 실시간 온라인 강의 이해도 분석)

  • Lee, Jaayeon;Jeong, Sohyun;Shin, You Won;Lee, Eunhye;Ha, Yubin;Choi, Jang-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1464-1475
    • /
    • 2020
  • Due to the spread of COVID-19, the online lecture has become more prevalent. However, it was found that a lot of students and professors are experiencing lack of communication. This study is therefore designed to improve interactive communication between professors and students in real-time online lectures. To do so, we explore deep learning approaches for automatic recognition of students' facial expressions and classification of their understanding into 3 classes (Understand / Neutral / Not Understand). We use 'BlazeFace' model for face detection and 'ResNet-GRU' model for facial expression recognition (FER). We name this entire process 'Degree of Understanding (DoU)' algorithm. DoU algorithm can analyze a multitude of students collectively and present the result in visualized statistics. To our knowledge, this study has great significance in that this is the first study offers the statistics of understanding in lectures using FER. As a result, the algorithm achieved rapid speed of 0.098sec/frame with high accuracy of 94.3% in CPU environment, demonstrating the potential to be applied to real-time online lectures. DoU Algorithm can be extended to various fields where facial expressions play important roles in communications such as interactions with hearing impaired people.

A Framework for Facial Expression Recognition Combining Contextual Information and Attention Mechanism

  • Jianzeng Chen;Ningning Chen
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.535-549
    • /
    • 2024
  • Facial expressions (FEs) serve as fundamental components for human emotion assessment and human-computer interaction. Traditional convolutional neural networks tend to overlook valuable information during the FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deep learning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanism for precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone network and introduced an improved group convolutional channel attention (GCCA) module in each block to emphasize the crucial expression features. A partial decoder was added at the end of the backbone network to facilitate the fusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the model to refine details layer-by-layer while introducing contextual information and extracting richer expression features. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss, creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectiveness of our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and 98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability.