• Title/Summary/Keyword: Facebow

Search Result 16, Processing Time 0.019 seconds

A study of sagittal condylar inclination and occlusal plane inclination of two semiadjustablearticulators with different reference plane (기준면이 다른 반조절성 교합기의 전방시상과로각과 교합평면경사각에 대한 연구)

  • Kim, Hyo-Jung;Lee, Sung-Bok;Choi, Dae-Gyun;Bak, Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.420-430
    • /
    • 2008
  • Statement of problem & Purpose: Articulators are very important for education and overall clinical situation in the field of prosthodontics, however preexisting articulators are designed and built based on maxillofacial structures and mean values of mandibular movement of Western people. Purpose of this research is to find out a adequate basis for applicating these articulators, presently used for clinical education, for Korean. Material and methods: 59 Korean adults (41 males, 18 females), aged between 24 to 41, where selected for this study. Two pairs of both maxillary and mandibular models were made for each examinee. These models where attached to both KaVo PROTARevo 7 and Hanau Modular semiadjustable articulators by using facebow transfer, than sagittal condylar inclination, occlusal plane inclination and position of mandibular on the articulator where measured. Result and conclusion: 1. Mean sagittal condylar inclination for KaVo PROTAR semiadjustable articulator was $33.75^{\circ}$(standard deviation $12.46^{\circ}$) meanwhile Hanau Modular semiadjustable articulator showed $40.72^{\circ}$(standard deviation $12.09^{\circ}$) for mean sagittal condylar inclination. 2. Mean occlusal plane inclination for KaVo PROTAR semiadjustable articulator was $-2.76{\circ}$(standard deviation $3.63^{\circ}$) meanwhile Hanau Modular semiadjustable articulator showed $11.87^{\circ}$ (standard deviation $3.63^{\circ}$) for mean occlusal plane inclination. 3. On the average center of the mandibular dentition were in the range of 5 to 7 mm of the central position of the articulator. Both anterior and posterior dentition were positioned at the center of the articulator vernacularly for KaVo PROTAR semiadjustable articulators, meantime for Hanau Modular semiadjustable articulator, anterior dentition was positioned 5 mm downwards and 3mm upwards for posterior dentition from vertically central position of the articulator.

Construction of an ideal set-up model for lingual orthodontic treatment (설측 교정치료를 위한 셋업 모형 제작의 정밀도)

  • Bae, Gi-Sun;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.459-474
    • /
    • 2005
  • Making a precise and ideal set-up model is an essential part in the indirect bonding procedure for lingual orthodontic treatment. To evaluate the accuracy of the making a set-up model, 22 adult patients who received lingual orthodontic treatment with 4 bicuspid extractions were selected, and 3 sets of dental models (before, set-up, and after treatment) were measured using the set-up model gauge, an instrument for measuring the inclination and angulation of the clinical crowns on the dental model. Two sets of lateral cephalograms (before and after) from each patient were also evaluated. The mean difference between the before treatment model and the set-up model was $-3.93{\pm}6.98^{\circ}$ for the inclination and $1.87{\pm}5.79^{\circ}$ for the angulation. And the mean difference between the set-up model and the after treatment model was $-4.31{\pm}5.91^{\circ}$ labiolingually and $-2.16{\pm}3.27^{\circ}$ mesiodistally, The after treatment model differed from the before treatment model about $-8.24{\pm}5.39^{\circ}$ in inclination. There were no significant difference between the measured gauge that measured from the dental model using the set-up model gauge and the calculated gauge angle measured from the lateral cephalogram using constructed points and lines. Using the set-up model gauge, it is possible to evaluate the study model 3-dimensionally in relation with the patient's lateral cephalogram and establish whether the doctor's prescription or overcorrection is built in the set-up model precisely.

Positional symmetry of porion and external auditory meatus in facial asymmetry

  • Choi, Ji Wook;Jung, Seo Yeon;Kim, Hak-Jin;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.33.1-33.9
    • /
    • 2015
  • Background: The porion (Po) is used to construct the Frankfort horizontal (FH) plane for cephalometrics, and the external auditory meatus (EAM) is to transfer and mount the dental model with facebow. The classical assumption is that EAM represents Po by the parallel positioning. However, we are sometimes questioning about the possible positional disparity between Po and EAM, when the occlusal cant or facial midline is different from our clinical understandings. The purpose of this study was to evaluate the positional parallelism of Po and EAM in facial asymmetries, and also to investigate their relationship with the maxillary occlusal cant. Methods: The 67 subjects were classified into three groups. Group I had normal subjects with facial symmetry ($1.05{\pm}0.52mm$ of average chin deviation) with minimal occlusal cant (<1.5 mm). Asymmetry group II-A had no maxillary occlusal cant (average $0.60{\pm}0.36$), while asymmetry group II-B had occlusal cant (average $3.72{\pm}1.47$). The distances of bilateral Po, EAM, and mesiobuccal cusp tips of the maxillary first molars (Mx) from the horizontal orbital plane (Orb) and the coronal plane were measured on the three-dimensional computed tomographic images. Their right and left side distance discrepancies were calculated and statistically compared. Results: EAM was located 10.3 mm below and 2.3 mm anterior to Po in group I. The vertical distances from Po to EAM of both sides were significantly different in group II-B (p=0.001), while other groups were not. Interside discrepancy of the vertical distances from EAM to Mx in group II-B also showed the significant differences, as compared with those from Po to Mx and from Orb to Mx. Conclusions: The subjects with facial asymmetry and prominent maxillary occlusal cant tend to have the symmetric position of Po but asymmetric EAM. Some caution or other measures will be helpful for them to be used during the clinical procedures.

A photoelastic evaluation of stress distribution during distal movement of upper molar (헤드기어를 이용한 상악 제1대구치의 후방이동 시 응력분포에 관한 광탄성법적 연구)

  • Song, Sae-Eun;Lim, Sung-Hoon;Yoon, Young-Joon;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.34 no.2 s.103
    • /
    • pp.121-129
    • /
    • 2004
  • The purpose of this study was to photoelastically visualize 4he distribution of fortes transmitted to the alveolus and surrounding structures using three different types of headgear for the distal movement of the upper molars. A photoelastic maxillary model was made and three different directional forces applied, which were high-pull, straight-pull, and cervical-pull. Stress distribution was recorded through circular polariscope, and two-dimensional photoelastic stress analysis was performed according to isochromatic fringe characteristics. The results were as follows: 1. In the case of high-pull headgear bodily movement occurred in the medium- length outer bow, stress distribution in the apical region was 1st molar, 2nd premolar, lst premolar in sequence and there was no apparent difference. 2. In the case of straight-pull headgear, bodily movement occurred in the long outer bow and stress distribution in the apical region was heavy in the 1st molar, 2nd premolar, 1st premolar in sequence. But. there were no apparent differences according to the length of the outer bow. 3. In the case of cervical- pull headgear, bodily movement also occulted in 4he long outer bow, and apical stress of the premolar region was heaviest among other cases and apical stress of the 2nd premolar was heaviest in the short outer bow. In clinical situations, to achieve bodily movement of the upper 1st molars without modifying outer bow height, applying an outer bow length as long as the inner bow length in high-pull headgear and applying an outer bow length longer than the inner bow length in straight-pull, cervical-pull headgear are recommended.

Full-mouth rehabilitation of severely attrited dentition with missing posterior teeth: a case report using digital workflow with jaw motion tracking (심한 교모와 구치부 상실을 보이는 환자의 전악 수복: Jaw motion tracking과 digital workflow를 활용한 증례 보고)

  • Chan Young Park;Younghoo Lee;Seoung-Jin Hong;Janghyun Paek;Kwantae Noh;Ahran Pae;Hyeong-Seob Kim;Kung-Rock Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.293-307
    • /
    • 2023
  • Jaw motion tracking, which is introduced in recent case reports, is a method which records the patient's individualized pathway of the mandibular movements along with facebow transfer, and reproduces the information in the virtual space of computer-aided-design/computer-aided-manufacturing (CAD-CAM) software. In this present case, a collapse of the occlusal plane was observed, due the loss of posterior teeth for a long period. Full-mouth rehabilitation with an increase in the occlusal vertical dimension was planned. First, the patient's mandibular movements were recorded on the newly established jaw relation by jaw tracking, and this information was assembled with the patient's intraoral data to create a virtual patient. Implant planning and diagnostic wax-up was done on the virtual patient, leading the fabrication of the provisional prosthesis. On the newly established jaw relation with an increase in the occlusal vertical dimension, canine guidance of the provisional prosthesis was checked. Finally, the provisional prosthesis was carried out to the definitive prosthesis. Using the advantages of the technologies in the digital dentistry, the patient was satisfied with the function and the esthetics after the treatment.

The treatment of an edentulous patient with DENTCA$^{TM}$ CAD/CAM Denture (CAD/CAM Denture를 이용한 완전 무치악 환자 수복 증례)

  • Park, Joon-Ho;Cho, In-Ho;Shin, Soo-Yeon;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Nowadays, CAD/CAM is broadly used in dentistry for inlays, crowns, implant abutments and its spectrum is expanding to complete dentures. Utilizing CAD/CAM to fabricate complete dentures is expected to decrease chair time and the number of visits, thus decreasing total fabrication time, expenses and errors caused during fabrication processes. One of the systems using CAD/CAM, DENTCA$^{TM}$ CAD/CAM denture (DENTCA Inc. Los Angeles, USA) scans edentulous impressions, designs dentures digitally, fabricates try-in dentures by 3D printing and converts them into final dentures. Patients can wear final dentures after only 2 - 3 visits with satisfying adaptation. This case report introduces a 71-year-old male patient who visited to consult remaking of existing old dentures. Residual teeth with bad prognosis and root remnants were extracted and the patient used reformed existing mandibular denture for 2 months. And then DENTCA system started. One-step border molding was done using conventional tray of adequate size provided by DENTCA system and wash impression was taken. Gothic arch tracing was completed based on the vertical dimension of existing dentures. Both maxillary and mandibular trays were placed to the resultant centric relation and bite registration was taken. Then DENTCA scanned the bite registration, arranged the teeth, completed the festooning and fabricated the try-in dentures by 3D printing. The try-in dentures were positioned, occlusal plane and occlusal relations were evaluated. The try-in dentures were converted to final dentures. To create bilateral balanced occlusion, occlusal adjustment was done after clinical remounting using facebow transfer. The result was satisfactory and it was confirmed by patient and operator.