• 제목/요약/키워드: Face velocity

검색결과 205건 처리시간 0.028초

이륜차 보호유리의 장착 기울기에 따른 이륜차 주위에서의 유동 해석 (Flow Analysis of Mounting Gradient of Protective Glass Around Motorcycle)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.596-601
    • /
    • 2014
  • In this study, driving efficiency and the safety of motorcycle drivers due to the mounting gradient of motorcycle protective glass are investigated through flow analysis. Mounting gradients of motorcycle protective glass in models 1, 2, and 3 are $60^{\circ}$, $70^{\circ}$, and $80^{\circ}$, respectively. Wind velocity of 100 km/h is applied to the protective glass installed at the front of each model. The flow resistance values of models 2 and 3 are 1.2 and 1.5 times, respectively, that of model 1. The driving efficiency of model 1 is the highest among the three models. Pressure to the driver's face in models 2 and 3 is 1.2 times higher than in model 1. Because the pressure to the driver's face in model 1, with mounting gradient of $60^{\circ}$, is the lowest among the three models, model 1 is the safest. This result can be applied to improve the safety of motorcycle drivers.

화강토지반내 복합막장터널의 파괴메카니즘 연구 (A Study on the Failure Mechanisms of the Mixed-face Tunnels in Decomposed Granite)

  • 신종호;이인근
    • 한국지반공학회논문집
    • /
    • 제17권4호
    • /
    • pp.317-329
    • /
    • 2001
  • 서울지하철 터널의 상당 구간이 막장면이 풍화토에서 풍화암까지 변화하는 복합화강토지반에 건설되어 왔다. 화강암풍화지반은 심도에 따라 강도의 변화가 크며, 수위가 높고 투수성 지반인 특징을 갖는다. 터널은 주로 비원형 배수터널로 설계되고 NATM 공법으로 시공되었다. 이와 같은 여건의 터널현장에서 발생하였던 붕괴사례를 조사한 결과, 대부분의 붕괴가 터널 어깨 부근으로부터 시작되었고, 구조적으로 완전하지 않은 라이닝, 그리고 지하수와의 연관성 등의 공통적 특징이 확인되었다. 이러한 터널문제는 지반조건, 시공조건, 터널형상 등 경계조건이 복잡하여 한계평형 해석과 같은 종래의 해석적 방법으로 터널안정을 검토하기가 용이하지 않다. 그 가장 큰 이유중의 하나는 터널의 파괴메카니즘에 대한 분명한 정보를 알 수 없는데 있다. 파괴메카니즘의 조사에는 전통적으로 원심모형시험법이 많이 사용되어 왔다. 그러나 화강토지반내의 터널처럼 복잡한 경계조건을 갖는 터널문제에는 적용하기 어렵다. 따라서 이에 대한 하나의 대안으로서 본 논문에서는 지반거동의 비선형성을 고려하는 Coupled 수치해석법을 이용하여 파괴메카니즘을 조사하였다. 수치해석결과의 증분변위벡터, 누적소성편차변형률 그리고 속도특성치(velocity characteristics)의 분석을 통해 실제 붕괴사례와 잘 일치하는 명확한 파괴메카니즘을 파악할 수 있었다. 이로부터 복잡한 경계조건을 갖는 터널 문제의 안정해석을 위한 파괴메카니즘을 조사하는 수치해석적 접근방법을 제시하였다.

  • PDF

R410A 냉방시스템의 마이크로채널 응축기에 관한 연구 (A Study on a Microchannel Condenser in a R410A A/C System)

  • 박창용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.221-226
    • /
    • 2008
  • A microchannel condenser as a part of a R410A residential air-conditioning system was examined experimentally and numerically in this study. The system was operated in separate environmental chambers and its performance was measured in ARI A, B, and C conditions. A numerical model for the microchannel condenser was developed and its results were compared with the experimental results. The model simulated the condenser with the assumption of the uniform air and refrigerant distribution, and with the consideration of the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. In order to consider the non-uniform air distribution, air velocity contours were generated from the measured local air velocities at the face of the condenser. The simulation results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser which was experimentally examined in this study. The comparison of the calculated and experimental results showed that the condenser capacity could be predicted well for every test condition. However, the prediction of refrigerant pressure drop deviated significantly from the measured values.

  • PDF

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation

  • Li, S.C.;Wu, J.;Xu, Z.H.;Li, L.P.;Huang, X.;Xue, Y.G.;Wang, Z.C.
    • Geomechanics and Engineering
    • /
    • 제10권4호
    • /
    • pp.471-526
    • /
    • 2016
  • In order to investigate water flow characteristics after inrushing in process of karst tunnel excavation, numerical simulations for five case studies of water inrush from the tunnel floor are carried out by using the FLUENT software on the background of Qiyueshan high risk karst tunnel. Firstly, the velocity-distance curves and pressure-distance curves are drawn by selecting a series of probing lines in a plane. Then, the variation characteristics of velocity and pressure are analyzed and the respective optimized escape routes are made. Finally, water flow characteristics after inrushing from the tunnel floor are discussed and summarized by comparing case studies under the conditions of different water-inrush positions and excavation situations. The results show that: (1) Tunnel constructors should first move to the tunnel side wall and then escape quickly when water inrush happens. (2) Tunnel constructors must not stay at the intersection area of the cross passage and tunnels when escaping. (3) When water inrush from floor happens in the left tunnel, if tunnel constructors meet the cross passage during escaping, they should pass through it rapidly, turn to the right tunnel and run to the entrance. (4) When water inrush from floor happens in the left tunnel, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment in the vicinity of the right tunnel working face. In addition, some rescuing equipment can be set up at the high location of the cross passage. (5) When water inrush from floor happens in the cross passage, tunnel constructors should move to the tunnel side wall quickly, turn to the tunnel without water inrush and run to the entrance. (6) When water inrush from floor happens in the cross passage, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment near by the left or the right tunnel working face. The results are of important practical significance and engineering value to ensure the safety of tunnel construction.

확산포집기를 이용한 공기 중 유기용제 포집에 관한 연구 (A Study on Organic Solvent Measurement Using Diffusive Sampler)

  • 박미진;윤충식;백남원
    • 한국산업보건학회지
    • /
    • 제4권2호
    • /
    • pp.208-223
    • /
    • 1994
  • The purpose of this study was to evaluate the efficiency of diffusive(or passive) sampler in measuring airbone organic solvents. Diffusive samplers are generally simple in construction and do not require power for operation. The efficiency of the diffusive samplers has not sufficiently been investigated in Korea. Three types of samplers were studied in this study. The sampling and analytical results by passive samplers were compared with results by charcoal tube method recommended by NIOSH(National Institute for Occupational Safty and Health). The following characteristics are identified and studied as critical to the performance passive monitors; recovery, reverse diffusion, storage stability, accuracy and precision, face velocity and humidity, n-Hexane, TCE(trichloroethylene) and toluene were used as test vapors. A dynamic vapor exposure system consisting of organic vapor generator and sampling chamber for evaluating diffusive samplers are made. The results of the study are summarized as follows. 1. NIOSH recommands that the overall accuracy of a sampling method in the range of 0.5 to 2.0 times the occupational health standard should be ${\pm}25$ percent for 95 percent confidence level. Among three types of diffusive samplers, sampler A has permeation membrane and samplers Band C have diffusive areas, samplers A and B met the criterion that overall accuracy for 95% confidence level of the samplers were within ${\pm}25$ percent of the reference value. Sampler C had overall accuracy ${\pm}9.6%$ and ${\pm}11.8%$ in hexane and TCE, respectively. The concentration of toluene was overestimated in sampler C with overall accuracy of ${\pm}43.9%$. 2. The desorption efficiencies of diffusive samplers were 96-107%. 3. There was no significant sampe loss during four weeks of storage both with and without refrigeration. 4. There was no significant reverse diffusion, when the samplers were exposure to clean air for 2 hours after sampling for 2 hours at the level of 2 TLY. 5. In case of 8 hours sampling, relative differences(RD) of concentrations between charcoal tube method and diffusive method were 15-39%, 13-46%, and 4-35% for sampler A, B and C, respectively. The performance was poor in 8 hours sampling for multiple substance monitors. 6. At high velocity(100 cm/sec), samplers B and C overestimated the concentrations of organic vapors, and sampler A with permeation membrance gave better results. 7. At 80% relative humidity, samplers showed no siginificant effect. Low humidity also did not affect the diffusive samplers.

  • PDF

코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동 (Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection)

  • 최재원;이동호;어지수;이동근;강전웅;지인서;김태영;홍지우
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.282-288
    • /
    • 2022
  • 코로나 팬데믹 시대에서 비말(respiratory droplet)을 통한 감염 및 확산을 막기 위해 마스크는 없어서는 안 될 생활 필수품이 되었다. 본 연구에서는 두 가지 다른 타입의 마스크(KF-94 마스크와 덴탈 마스크)가 비말 차단에 얼마나 효과적인지를 파악하기 위하여, i) 각각의 마스크를 구성하고 있는 필터의 젖음성(wettability) 특성을 분석하고, ii) 필터 표면에 빠른 속도로 충돌하는 미소 액적의 동적 거동 특성을 실험적으로 관찰하였다. 각 필터의 구성 재료에 따라 상반된 젖음성 특성, 소수성(hydrophobicity) 또는 친수성(hydrophilicity)을 보임을 확인하였다. 또한, 일정 체적을 갖는 미소 액적을 안정적으로 토출하는 공압 조건을 탐색하고 액적의 충돌 속도 변화에 따른 액적 충돌 거동 변화를 분석하였다. 마스크를 구성하고 있는 필터의 종류와 액적 충돌 속도에 따라 i) 필터를 통과하지 못하거나(no penetration), ii) 필터에 포획(capture)되거나, iii) 필터를 통과(penetration)하는 등의 다른 충돌 후 거동을 보임을 확인하였다. 이러한 결과들은 비말 차단용 마스크 디자인에 있어 매우 기본적이고 유용한 정보를 제공할 뿐만 아니라, 다양한 다공성 표면에서의 액적 거동에 대한 학문적 연구에도 도움이 될 것으로 판단된다.

압전형 센서/액추에이터를 이용한 진동구조물의 능동-수동제어 (Active-passive control of flexible sturctures using piezoelectric sensor/actuator)

  • 고병식
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.313-325
    • /
    • 1995
  • Two active/passive vibration dampers were designed to control a cantilever beam first mode of vibration. The active element was a piezoelectric polymer, polyvinlidene fluoride (PVDF). The passive damping was provided by the application of a viscoelastic layer on the surface of the steel beam. Two substantially different damper configurations were designed and tested. One damper consisted of a piezoelectric actuator bonded to one face of the beam, with a viscoelastic layer applied to the other surface of the beam. The second one was composed of a layer viscoeastic layer with one surface bonded to the beam, and with other being constrained by nine piezoelectric actuators connected in parallel. A control law based on the sign of the angular velocity of the cantilever beam was implemented to control the beam first mode of vibration. The piezoelectric sensor output was digitally differentiated to obtain the transverse linear velocity, and its sign was used in the control algorith. Two dampers provided the system a damping increase of a factor of four for the first damper and three for the second damper. Both dampers were found to work well at low levels of vibration, suggesting that they can be used effectively to prevent resonant vibrations in flexible structure from initiating and building up.

  • PDF

화재강도변화에 따른 횡류식 대배기구 배연량 설정에 관한 연구 (A Study on Setting Smoke Exhaust Rate According to the Transverse Ventilation with Oversized Exhaust Ports in Road Tunnel by the Variation of Fire Intensity)

  • 이동호;김하영
    • 한국화재소방학회논문지
    • /
    • 제22권2호
    • /
    • pp.38-43
    • /
    • 2008
  • 최근에 양방향 도로터널에서 배연효율의 증가가 요구됨에 따라 대배기에 의한 횡류식 양방향터널 배연시스템 적용이 증가되었다. 본 연구에서는 FDS Ver4.0을 사용한 수치해석을 통해 배연량과 화재강도를 변화시켜 최적배연조건을 도출하였다. 결과로, 터널 내부로 외부기류가 유입되는 경우에는 배연량을 증가시켜야 하는 것으로 나타났으며 화재지점으로 2.5m/s의 속도로 외기가 불어올 때 연기가 250m 이내로 제어되는 대배기구의 배연용량은 $244.8m^3/s$의 값으로 제어되어야 한다.