• Title/Summary/Keyword: Face turning

Search Result 53, Processing Time 0.025 seconds

A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling (금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구)

  • 조성실;임근영;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

Realistic 3-dimensional using computer graphics Expression of Human illustrations (컴퓨터그래픽스를 이용한 사실적인 3D 인물 일러스트레이션의 표현)

  • Kim, Hoon
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.79-88
    • /
    • 2006
  • A human face figure is a visual symbol of identity. Each different face per person is a critical information differentiating each person from others and it directly relates to individual identity. When we look back human history, historical change of recognition for a face led to the change of expression and communication media and it in turn caused many changes in expressing a face. However, there has not been no time period when people pay attention to a face more than this time. Technically, the advent of computer graphics opened new turning point in expressing human face figure. Especially, a visual image which can be produced, saved, and transferred in digital has no limitation in time and space, and its importance in communication is getting higher and higher. Among those visual image information, a face image in digital is getting more applications. Therefore, 3d (3-dimensional) expression of a face using computer graphics can be easily produced without any professional techniques, just like assembling puzzle parts composed of the shape of each part ands texture map, etc. This study presents a method with which a general visual designer can effectively express 3d type face by studying each producing step of 3d face expression and by visualizing case study based on the above-mentioned study result.

  • PDF

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity

  • Azizi, Mohamed Walid;Keblouti, Ouahid;Boulanouar, Lakhdar;Yallese, Mohamed Athmane
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.501-513
    • /
    • 2020
  • In the present work, the optimization of machining parameters to achieve the desired technological parameters such as surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models.

A Study on Cutting Force Measurement Using Cylindrical Capacitance-Type Spindle Displacement Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;박만진;장동영;한동철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.89-94
    • /
    • 2001
  • A cylindrical capacitance-type spindle displacement sensor was designed and tested in the hard turning as a way to develop a sensor that can estimate cutting forces without using a tool dynamometer. The displacement sensor was installed between the face of spindle cover and the chucking element, and measured pure radial motion of the spindle. Ceramic inserts and tool steel workpieceof 65 Rc were used during the hard turning tests. The signals from the sensor showed the same pattern of cutting force variations as those from the tool dynamometer. The research results showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to estimate cutting forces.

  • PDF

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

A Study on the Precision Machining Characteristics in Heavy Cutting of Al-alloy (Al합금의 중절삭시 정밀가공 특성에 관한 연구)

  • 권용기;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.203-208
    • /
    • 2002
  • This paper deals with turning experiments of aluminium alloy using a single crystal diamond with round cutting edge. A face cutting was conducted using a special precision machine to study the characteristic phenomena in heavy cutting of aluminium alloy. In many cases, one of the most important matter on the surface integrity is about a damaged layer remaining just under the surface after machining. A machined surface roughness can be improved at a small geometrical surface roughness under special cutting conditions, even if a steady vibration exists between a tool and a workpiece.

  • PDF

A Machine Vision Algorithm for the Automatic Inspection of Inserts (인서트 자동검사를 위한 시각인식 알고리즘)

  • 이문규;신승호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.795-801
    • /
    • 1998
  • In this paper, we propose a machine vision algorithm for inspecting inserts which are used for milling and turning operations. Major defects of the inserts are breakage and crack on insert surfaces. Among the defects, breakages on the face of the inserts can be detected through three stages of the algorithm developed in this paper. In the first stage, a multi-layer perceptron is used to recognize the inserts being inspected. Edge detection of the insert image is performed in the second stage. Finally, in the third stage breakages on the insert face are identified using Hough transform. The overall algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF

The Difference of Digestion, Sweat, Stool, Urination, Drinking, Coldness and Hotness Characteristics according to Sasang Constitutional Exterior and Interior Diagnosis (체질별 표리에 따른 소화, 땀, 대변, 소변, 음수, 한열 특성 차이)

  • Jang, Eun-Su;Baek, Young-Hwa;Park, Ki-Hyun;Lee, Si-Woo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • 1. Objective : It is well-known that even if some people are born with same constitution, their symptoms can be different according to Exterior and Interior diagnosis. This study aimed to suggest different clinical symptoms according to Exterior and Interior group in individual Sasang constitution. 2. Methods : We collected 706 physiological and pathological data of subjects from August 2009 to July 2011 using case report form of Questionnaire. The Sasang constitutional diagnosis and Exterior and Interior diagnosis were conducted by Sasang constitutional experts. All data were analyzed with Chi-square test and significant p value was 0.05. 3. Results : There are different symptoms between Exterior and Interior group in Taeeumin as followed, the frequence of famine and burp, the part of sweat, brown or not in color of stool, painful or not in evacuating, the frequence of loose feces, the frequence of abdominal inflating, the costive feeling frequence after evacuating, foam in urine or not, urination times, amount of Coldness and Hotness in belly, the frequence of turning fale in face. Soeumin as followed, digestion well or not, amount of sweat in exercise, the brown or not in color of stool, the frequence of turning fale in face, athe frequence of clearness in urine and feeling hot. Soyangin as followed, amount of appetite, amount of sweat in hot weather, sweat in neck or not, the red color in urine or not, Coldness and Hotness in foot or not, amount of drinking. 3. Conclusions : We may suggest that physiological and pathological symptoms are different between exterior and interior group in individual Sasang constitution respectively.

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF