Applying face alignment after face detection exerts a heavy influence on face recognition. Many researchers have recently investigated face alignment using databases collected from images taken at close distances and with low magnification. However, in the cases of home-service robots, captured images generally are of low resolution and low quality. Therefore, previous face alignment research, such as eye detection, is not appropriate for robot environments. The main purpose of this paper is to provide a new and effective approach in the alignment of small and blurred faces. We propose a face alignment method using the confidence value of Real-AdaBoost with a modified census transform feature. We also evaluate the face recognition system to compare the proposed face alignment module with those of other systems. Experimental results show that the proposed method has a high recognition rate, higher than face alignment methods using a manually-marked eye position.
The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.
본 논문에서는 얼굴영상에 나타난 사람의 표정을 인식하기 위해 얼굴검출, 얼굴정렬, 얼굴단위 추출, 그리고 AdaBoost를 이용한 학습 방법과 효과적인 인식방법을 제안한다. 입력영상에서 얼굴 영역을 찾기 위해서 얼굴검출을 수행하고, 검출된 얼굴영상에 대하여 학습된 얼굴모델과 정렬(Face Alignment)을 수행한 후, 얼굴의 표정을 나타내는 단위요소(Facial Units)들을 추출한다. 본 논문에서 제안하는 얼굴 단위요소들을 표정을 표현하기 위한 기본적인 액션유닛(AU, Action Units)의 하위집합으로 눈썹, 눈, 코, 입 부분으로 나눠지며, 이러한 액션유닛에 대하여 AdaBoost 학습을 수행하여 표정을 인식한다. 얼굴유닛은 얼굴표정을 더욱 효율적으로 표현할 수 있고 학습 및 테스트에서 동작하는 시간을 줄여주기 때문에 실시간 응용분야에 적용하기 적합하다. 실험결과, 제안하는 표정인식 시스템은 실시간 환경에서 90% 이상의 우수한 성능을 보여준다.
AAM은 얼굴 윤곽 검출에 잘 적용되어 왔으나 초기값에 민감하다는 특성을 가지고 있다. 본 논문에서는 점진적 AAM을 이용한 얼굴 윤곽 검출 방법을 제안한다. 제안한 방법은 얼굴 모델 구성 및 관계 추출 단계와 얼굴 윤곽 검출 단계의 2단계로 구성된다. 얼굴 모델 구성 및 관계 추출 단계에서는 먼저 얼굴 내부 영역만으로 구성된 얼굴 내부 AAM 모델 구성과 얼굴 전체 영역으로 구성된 얼굴 전체 AAM 모델 구성을 수행한 후에, 이후 얼굴 내부 AAM 모델 파라미터 벡터와 얼굴 전체 AAM 모델 파라미터 벡터간의 관계 행렬을 추출한다. 얼굴 윤곽 검출 단계는 2단계 절차로 수행된다. 먼저 새로 입력되는 얼굴 이미지에 대해 얼굴 내부 AAM 모델을 맞추어 얼굴 내부에 대한 특징 파라미터 벡터를 구한다. 이후 얼굴 모델 구성 및 관계 추출 단계에서 구한 관계 행렬과 첫 단계에서 구한 얼굴 내부 특징 파라미터 벡터를 이용하여 얼굴 전체 AAM 특징 파라미터 벡터에 대한 초기값을 추정하고 이를 이용하여 새로 입력되는 얼굴 이미지에 대해 얼굴 전체 AAM 모델을 맞추어 전체 얼굴 윤곽 검출을 수행한다. 실험을 통해 제안된 점진적 AAM 기반 얼굴 윤곽 검출 방법이 자세, 얼굴 배경 등에 대해 기존 기본 AAM 기반 얼굴 검출 방법보다 더 강인한 것으로 확인되었다.
Ratyal, Naeem;Taj, Imtiaz;Bajwa, Usama;Sajid, Muhammad
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권10호
/
pp.4903-4929
/
2018
In this study, a fully automatic pose and expression invariant 3D face alignment algorithm is proposed to handle frontal and profile face images which is based on a two pass course to fine alignment strategy. The first pass of the algorithm coarsely aligns the face images to an intrinsic coordinate system (ICS) through a single 3D rotation and the second pass aligns them at fine level using a minimum nose tip-scanner distance (MNSD) approach. For facial recognition, multi-view faces are synthesized to exploit real 3D information and test the efficacy of the proposed system. Due to optimal separating hyper plane (OSH), Support Vector Machine (SVM) is employed in multi-view face verification (FV) task. In addition, a multi stage unified classifier based face identification (FI) algorithm is employed which combines results from seven base classifiers, two parallel face recognition algorithms and an exponential rank combiner, all in a hierarchical manner. The performance figures of the proposed methodology are corroborated by extensive experiments performed on four benchmark datasets: GavabDB, Bosphorus, UMB-DB and FRGC v2.0. Results show mark improvement in alignment accuracy and recognition rates. Moreover, a computational complexity analysis has been carried out for the proposed algorithm which reveals its superiority in terms of computational efficiency as well.
Active Appearance Models은 객체의 모델링에 널리 사용되며, 특히 얼굴 모델은 얼굴 추적, 포즈 인식, 표정 인식, 그리고 얼굴 인식에 널리 사용되고 있다. 최초의 AAM은 Shape과 Appearance가 하나의 계수에 의해서 만들어 지는 Combined AAM이였고, 이후 Shape과 Appearance의 계수가 분리된 Independent AAM과 3D를 표현할 수 있는 Combined 2D+3D AAM이 개발 되었다. 비록 Combined 2D+3D AAM이 3D를 표현 할 수 있을지라도 이들은 공통적으로 2D 영상을 사용하여 모델을 생산한다. 본 논문에서 우리는 stereo-camera based 3D face capturing device를 통해 획득한 3D 데이터를 기반으로 하는 3D AAM을 제안한다. 우리의 3D AAM은 3D정보를 이용해 모델을 생산하므로 기존의 AAM보다 정확한 3D표현이 가능하고 Alignment Algorithm으로 Inverse Compositional Image Alignment(ICIA)를 사용하여 빠르게 Model Instance를 생산할 수 있다. 우리는 3D AAM을 평가하기 위해 stereo-camera based 3D face capturing device로 촬영해 수집한 한국인 얼굴 데이터베이스[9]로 얼굴인식을 수행하였다.
We fabricated test samples containing various shape elements and surface roughness checking points for the jewelry cast master patterns by employing the 3D computer aided design (CAD), selective laser sintering (SLS) rapid prototype (RP) with the DuraForm powders. We varied the alignment angle from $0^{\circ}$ to $10^{\circ}$ at a given layer thickness of 0.08 and 0.1mm, respectively, in RP operation. Dimensions of the shape elements as well as values of surface roughness are characterized by an optical microscope and a contact-scanning profilometer. Surface roughness values of the top and vertical face increased as the alignment angle increased, while the other roughness values and shape elements variation were not depending on the alignment angle. The resolution of the shape realization was enhanced as the layer thickness became smaller. The minimum diameter of the hole, common in jewelry design, was 1.2 mm, and the shrinkage became 12% at the 1.6 mm-diameter hole, Our results implied that we face down the proposed design elements with $0^{\circ}$ alignment angle, and consider the shrinkage effect of each shape element in DuraForm RP jewelry modeling.
최근 미디어 분야에도 인공지능(AI)을 적용한 다양한 서비스가 등장하고 있는 추세이다. 하지만 편집점을 찾아 영상을 이어 붙이는 영상 편집은, 대부분 수동적 방식으로 진행되어 시간과 인적 자원의 소요가 많이 발생하고 있다. 이에 본 연구에서는 Video Swin Transformer를 활용하여, 발화 여부에 따른 영상의 편집점을 탐지할 수 있는 방법론을 제안한다. 이를 위해, 제안 구조는 먼저 Face Alignment를 통해 얼굴 특징점을 검출한다. 이와 같은 과정을 통해 입력 영상 데이터로부터 발화 여부에 따른 얼굴의 시 공간적인 변화를 모델에 반영한다. 그리고, 본 연구에서 제안하는 Video Swin Transformer 기반 모델을 통해 영상 속 사람의 행동을 분류한다. 구체적으로 비디오 데이터로부터 Video Swin Transformer를 통해 생성되는 Feature Map과 Face Alignment를 통해 검출된 얼굴 특징점을 합친 후 Convolution을 거쳐 발화 여부를 탐지하게 된다. 실험 결과, 본 논문에서 제안한 얼굴 특징점을 활용한 영상 편집점 탐지 모델을 사용했을 경우 분류 성능을 89.17% 기록하여, 얼굴 특징점을 사용하지 않았을 때의 성능 87.46% 대비 성능을 향상시키는 것을 확인할 수 있었다.
Facial alignment is very important task for human life. And facial landmark detection is one of the instrumental methods in face alignment. We introduce the stacked hourglass networks with transposed convolutional layers for facial landmark detection. our method substitutes nearest neighbor upsampling for transposed convolutional layer. Our method returns better accuracy in facial landmark detection compared to stacked hourglass networks with nearest neighbor upsampling.
Electron microscopy is currently the only available technique with a spatial resolution sufficient to identify fine neuronal processes and synaptic structures in densely packed neuropil. For large-scale volume reconstruction of neuronal connectivity, serial block-face scanning electron microscopy allows us to acquire thousands of serial images in an automated fashion and reconstruct neural circuits faster by reducing the alignment task. Here we introduce the whole reconstruction procedure of synaptic network in the rat hippocampal CA1 area and discuss technical issues to be resolved for improving image quality and segmentation. Compared to the serial section transmission electron microscopy, serial block-face scanning electron microscopy produced much reliable three-dimensional data sets and accelerated reconstruction by reducing the need of alignment and distortion adjustment. This approach will generate invaluable information on organizational features of our connectomes as well as diverse neurological disorders caused by synaptic impairments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.