• Title/Summary/Keyword: Face Representation

Search Result 139, Processing Time 0.044 seconds

Efficient 3D Model based Face Representation and Recognition Algorithmusing Pixel-to-Vertex Map (PVM)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.228-246
    • /
    • 2011
  • A 3D model based approach for a face representation and recognition algorithm has been investigated as a robust solution for pose and illumination variation. Since a generative 3D face model consists of a large number of vertices, a 3D model based face recognition system is generally inefficient in computation time and complexity. In this paper, we propose a novel 3D face representation algorithm based on a pixel to vertex map (PVM) to optimize the number of vertices. We explore shape and texture coefficient vectors of the 3D model by fitting it to an input face using inverse compositional image alignment (ICIA) to evaluate face recognition performance. Experimental results show that the proposed face representation and recognition algorithm is efficient in computation time while maintaining reasonable accuracy.

Face Recognition Robust to Occlusion via Dual Sparse Representation

  • Shin, Hyunhye;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.46-48
    • /
    • 2016
  • Purpose In face reocognition area, estimating occlusion in face images is on the rise. In this paper, we propose a new face recognition algorithm based on dual sparse representation to solve this problem. Method Each face image is partitioned into several pieces and sparse representation is implemented in each part. Then, some parts that have large sparse concentration index are combined and sparse representation is performed one more time. Each test sample is classified by using the final sparse coefficient where correlation between the test sample and training sample is applied. Results The recognition rate of the proposed algorithm is higher than that of the basic sparse representation classification. Conclusion The proposed method can be applied in real life which needs to identify someone exactly whether the person disguises his face or not.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).

Robust Face Recognition under Limited Training Sample Scenario using Linear Representation

  • Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3172-3193
    • /
    • 2018
  • Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.

Face recognition Based on Super-resolution Method Using Sparse Representation and Deep Learning (희소표현법과 딥러닝을 이용한 초고해상도 기반의 얼굴 인식)

  • Kwon, Ohseol
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2018
  • This paper proposes a method to improve the performance of face recognition via super-resolution method using sparse representation and deep learning from low-resolution facial images. Recently, there have been many researches on ultra-high-resolution images using deep learning techniques, but studies are still under way in real-time face recognition. In this paper, we combine the sparse representation and deep learning to generate super-resolution images to improve the performance of face recognition. We have also improved the processing speed by designing in parallel structure when applying sparse representation. Finally, experimental results show that the proposed method is superior to conventional methods on various images.

Face Transform with Age-progressing based on Vector Representation (벡터표현 기반의 연령변화에 따른 얼굴 변환)

  • Lee, Hyun-jik;Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.39-44
    • /
    • 2010
  • In this paper, we addressed a face transform scheme with age-progressing based on vector representation. Proposed approach utilized a vector modeling as well as morphing so as to improve not only a reliability but also a consistency. For the more, some elements of texture change owing to the face shape are defined and some parameters with respect to the internal and external environments are also considered. To testify the proposed approach, estimation of similarity is performed with qualitative manner by using experimental output, and finally resulted in satisfactory for face shape transformation aged from sixty to fourteen.

  • PDF

Using Spatial Pyramid Based Local Descriptor for Face Recognition (공간 계층적 구조 기반 지역 기술자 활용 얼굴인식 기술)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.758-768
    • /
    • 2017
  • In this paper, we present a novel method to extract face representation based on multi-resolution spatial pyramid. In our method, a face is subdivided into increasingly finer sub-regions (local regions) and represented at multiple levels of histogram representations. To cope with misaligned problem, patch-based local descriptor extraction has been also developed in a novel way. To preserve multiple levels of detail in local characteristics and also encode holistic spatial configuration, histograms from all levels of spatial pyramid are integrated by using dimensionality reduction and feature combination, leading to our spatial-pyramid face feature representation. We incorporate our proposed face features into general face recognition pipeline and achieve state-of-the-art results on challenging face recognition problems.

Face Representation Method Using Pixel-to-Vertex Map(PVM) for 3D Model Based Face Recognition (3차원 얼굴인식을 위한 픽셀 대 정점 맵 기반 얼굴 표현방법)

  • Moon, Hyeon-Jun;Jeong, Kang-Hun;Hong, Tae-Hwa
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1031-1032
    • /
    • 2006
  • A 3D model based face recognition system is generally inefficient in computation time because 3D face model consists of a large number of vertices. In this paper, we propose a novel 3D face representation algorithm to reduce the number of vertices and optimize its computation time.

  • PDF

Few Samples Face Recognition Based on Generative Score Space

  • Wang, Bin;Wang, Cungang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5464-5484
    • /
    • 2016
  • Few samples face recognition has become a highly challenging task due to the limitation of available labeled samples. As two popular paradigms in face image representation, sparse component analysis is highly robust while parts-based paradigm is particularly flexible. In this paper, we propose a probabilistic generative model to incorporate the strengths of the two paradigms for face representation. This model finds a common spatial partition for given images and simultaneously learns a sparse component analysis model for each part of the partition. The two procedures are built into a probabilistic generative model. Then we derive the score function (i.e. feature mapping) from the generative score space. A similarity measure is defined over the derived score function for few samples face recognition. This model is driven by data and specifically good at representing face images. The derived generative score function and similarity measure encode information hidden in the data distribution. To validate the effectiveness of the proposed method, we perform few samples face recognition on two face datasets. The results show its advantages.

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.