• Title/Summary/Keyword: Face Pressure

Search Result 509, Processing Time 0.025 seconds

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

In Search of a Performing Seal: Rethinking the Design of Tight-Fitting Respiratory Protective Equipment Facepieces for Users With Facial Hair

  • Meadwell, James;Paxman-Clarke, Lee;Terris, David;Ford, Peter
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.275-304
    • /
    • 2019
  • Background: Air-purifying, tight-fitting facepieces are examples of respiratory protective equipment and are worn to protect workers from potentially harmful particulate and vapors. Research shows that the presence of facial hair on users' face significantly reduces the efficacy of these devices. This article sets out to establish if an acceptable seal could be achieved between facial hair and the facepiece. The team also created and investigated a low-cost "pressure testing" method for assessing the efficacy of a seal to be used during the early design process for a facepiece designed to overcome the facial hair issue. Methods: Nine new designs for face mask seals were prototyped as flat samples. A researcher developed a test rig, and a test protocol was used to evaluate the efficacy of the new seal designs against facial hair. Six of the seal designs were also tested using a version of the conventional fit test. The results were compared with those of the researcher-developed test to look for a correlation between the two test methods. Results: None of the seals performed any better against facial hair than a typical, commercially available facepiece. The pressure testing method devised by the researchers performed well but was not as robust as the fit factor testing. Conclusion: The results show that sealing against facial hair is extremely problematic unless an excessive force is applied to the facepiece's seal area pushing it against the face. The means of pressure testing devised by the researchers could be seen as a low-cost technique to be used at the early stages of a the design process, before fit testing is viable.

Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data (천공데이터를 이용한 터널 굴진면 전방 암반강도 예측)

  • Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.479-489
    • /
    • 2009
  • Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.

Real-time Vital Signs Measurement System using Facial Image Data (안면 이미지 데이터를 이용한 실시간 생체징후 측정시스템)

  • Kim, DaeYeol;Kim, JinSoo;Lee, KwangKee
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.132-142
    • /
    • 2021
  • The purpose of this study is to present an effective methodology that can measure heart rate, heart rate variability, oxygen saturation, respiration rate, mental stress level, and blood pressure using mobile front camera that can be accessed most in real life. Face recognition was performed in real-time using Blaze Face to acquire facial image data, and the forehead was designated as ROI (Region Of Interest) using feature points of the eyes, nose, and mouth, and ears. Representative values for each channel of the ROI were generated and aligned on the time axis to measure vital signs. The vital signs measurement method was based on Fourier transform, and noise was removed and filtered according to the desired vital signs to increase the accuracy of the measurement. To verify the results, vital signs measured using facial image data were compared with pulse oximeter contact sensor, and TI non-contact sensor. As a result of this work, the possibility of extracting a total of six vital signs (heart rate, heart rate variability, oxygen saturation, respiratory rate, stress, and blood pressure) was confirmed through facial images.

Pressure Drop and Refrigerant-Entrainment Characteristics of the Eliminators used in Absorption Chillers (흡수식 냉동기용 엘리미네이터의 압력손실 및 액적유입 특성)

  • 정시영;류진상;이상수;이정주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • The performance of two vertical-blade eliminators (V1, V2) and two horizontal-blade ones (H1, H2) for absorption chillers were tested in terms of pressure drop and refrigerant entrainment. The test was carried out using a wind tunnel with a cross section of 300 mm$\times$300 mm. The pressure drop of four eliminators tested was found to be in the rage of 1.0~2.7mm $H_2O$ at the face velocity of 2m/s. In the refrigerant entrainment test the vertical-blade eliminators showed much better performance than the horizontal-blade ones. The horizontal-blade eliminators showed satisfactory results at the air velocity of 2m/s but exceeded the limit value at 3 m/s. Since the cooling capacity of a machine is lowered by about 2.5% at the pressure drop of 1 m $H_2O$, more researches are required to reduce the pressure drop in the eliminator.

New Approach to Pressure Control of a Impression Cylinder for Roll Coater (인쇄성능 향상을 위한 롤코터용 임프레션 실린더의 압력 제어)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • This study presents a new approach to pressure control of a impression cylinder for roll coater which is a kind of face pressure control between blanket roll and impression roll. Roll-to-Roll method for printing is a very useful tool for mass production such as RFID elements, smart sensors and solar cell devices. In this study, a decupling control strategy of the roll coater which is a combination of a cylinder system, a dry system and two pressure regulators with two pneumatic cylinders was discussed. Also, the characteristics of component such as a pressure regulator having a pressure reducing function and the movement of a blanket roll and a impression cylinder were analyzed using the Matlab software. From this results, the techniques of a shock and a vibration reduction were suggested.

  • PDF

Recognizing Sleeping Posture on Bed by using the Measurement of Body Pressure Distribution (체압분포 측정을 이용한 수면자세 인식)

  • 권규식;김진선;박세진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.211-219
    • /
    • 1999
  • Sleeping is important activity in bedroom and it takes one third of our lifetime. The body pressure distribution on bed has been considered as one of the most important factors affecting sleeping comfort. The measurement contact pressure has been applied to design seat, mattress, shoes, etc., for prevention of pressure sores and improvement of products. This paper discusses the recognizing rule of sleeping posture using contact pressure. Subjects' ages are ranged from twenties to fifties. They include 29 males and 35 females. Body pressure distribution is measured in the state of stable bed when subject lies on his/her back, on his/her side and on his/her face. We made recognizing rules of sleeping posture through statistical analysis; ANOVA and regression analysis, qualitative analysis.

  • PDF

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.