• Title/Summary/Keyword: Face/Iris area recognition

Search Result 2, Processing Time 0.016 seconds

Design of Image Recognition Module for Face and Iris Area based on Pixel with Eye Blinking (눈 깜박임 화소 값 기반의 안면과 홍채영역 영상인식용 모듈설계)

  • Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • In this paper, an USB-OTG (Uiversal Serial Bus On-the-go) interface module was designed with the iris information for personal identification. The image recognition algorithm which was searching face and iris areas, was proposed with pixel differences from eye blinking after several facial images were captured and then detected without any activities like as pressing the button of smart phone. The region of pupil and iris could be fast involved with the proper iris area segmentation from the pixel value calculation of frame difference among the images which were detected with two adjacent open-eye and close-eye pictures. This proposed iris recognition could be fast processed with the proper grid size of the eye region, and designed with the frame difference between the adjacent images from the USB-OTG interface with this camera module with the restrict of searching area in face and iris location. As a result, the detection time of iris location can be reduced, and this module can be expected with eliminating the standby time of eye-open.

Basic Implementation of Multi Input CNN for Face Recognition (얼굴인식을 위한 다중입력 CNN의 기본 구현)

  • Cheema, Usman;Moon, Seungbin
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1002-1003
    • /
    • 2019
  • Face recognition is an extensively researched area of computer vision. Visible, infrared, thermal, and 3D modalities have been used against various challenges of face recognition such as illumination, pose, expression, partial information, and disguise. In this paper we present a multi-modal approach to face recognition using convolutional neural networks. We use visible and thermal face images as two separate inputs to a multi-input deep learning network for face recognition. The experiments are performed on IRIS visible and thermal face database and high face verification rates are achieved.