• Title/Summary/Keyword: Fabry-Perot sensors

Search Result 51, Processing Time 0.027 seconds

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Analysis of biomarkers with tunable infrared gas sensors (가변 파장형 적외선 가스 센서에 의한 생체표지자 분석)

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.314-319
    • /
    • 2021
  • In this study, biomarkers were analyzed and segmented using tunable infrared gas sensors after performing the principal component analysis. The free spectral range of the device under test (DUT) was around 30 nm and DUT-5580 yielded the highest output voltage property among the others. The biomarkers (isoprophyl alcohol, ethanol, methanol, and acetone solutions) were sequentially mixed with deionized water and their mists were carried into the gas chamber using high-purity nitrogen gas. A total of 17 different mixed gases were tested with three tunable infrared gas sensors, namely DUT-3144, DUT-5580, and DUT-8010. DUT-8010 resolved the infrared absorption spectra of whole mixed gases. Based on the principal component analysis with each DUT and their combinations, each mixed gas and the trends in increasing gas concentration could be well analyzed when the contributions of the eigenvalues of the first and second were higher than 70% and 10%, respectively, and their sum was greater than 90%.

Tunable fiber interference filter for sensors and communication system (파장가변 광섬유 간섭형 필터 연구개발)

  • 예윤해;윤지옥;이성필
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.151-155
    • /
    • 1998
  • A new Fabry-Perot tunable filter has been built with simple construction, which does not require any additional aligning and/or beam-confining components for the reduction of the diffraction loss. For this feature, one of the two fibers for the filter is processed to have a concave mirror whose curvature is the same as that of the wavefront of the Gaussian beam from the first fiber. After high reflection coatings, the two fibers are aligned to result in an FP filter whose bandwidth, free spectral range, and insertion loss is 1.47nm, 52nm, 5.6dB respectively.

  • PDF

Development of FBG sensor System for Measuring the High Frequent Vibration of Structures and the Natural Frequency of Composites (고주파 진동 측정을 위한 FBG 센서 시스템 개발 및 복합재 시편의 고유진동수 측정)

  • Kim, Dae-Hyun;Koo, Bon-Yong;Kim, Chun-Gon;Hong, Chang-Sun;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.159-162
    • /
    • 2002
  • We introduce a simple optically passive detection scheme for Bragg grating sensors. This detection scheme is based on two cavity lengths in Fabry-Perot read-out interferometers to produce two quadrature phase shifted signals from the Bragg grating sensor. The passive detection technique is demonstrated by the use of Bragg grating sensors in measuring the dynamic vibrations of the composites.

  • PDF

Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors (광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Study on the High Speed WIM(Weigh-in-Motion) Measurement with Optical Fiber Sensor System (광섬유센서를 이용한 고속주행 트럭의 축중 측정에 관한 연구)

  • 조성규;김기수;배병우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.451-460
    • /
    • 2003
  • In this paper, high speed fiber optic sensor weigh-in motion (WIM) system is proposed. Bragg gratings which have several advantages such as good reproducibility and good multiplicity compare to other optical fiber sensors are used for the system. Fabry-Perot filter for the signal process, which cannot be used in the high speed measurement because of the limitation in fast operation of PZT, is excluded. A new signal processing system which employs bandwidth filter is proposed and bridge type new sensor package design is also proposed. Design of the mold supporter is modified to round shape and then supporting points do not change. The data from the fiber sensors show identical and linear behavior to the axle weight. The proposed fiber optic WIM system is tested in the laboratory and experimented with actual trucks. The new concept of calibration is introduced and calculated by the experiments. The calibrated weight data show good approximations to real axial weights regardless the velocities of the truck.

  • PDF

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

Cure Monitoring of Composite Laminates Using Fiber Optic Sensors (광섬유 센서를 이용한 복합재료 적층판의 성형 모니터링)

  • Gang, Hyeon-Gyu;Gang, Dong-Hun;Park, Hyeong-Jun;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • In this paper, we present the simulataneous monitoring of the strain and temperature during cures f various composite laminates using fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors. Three types of graphite/epoxy composite were used : a undirectional laminate, a symmetric cross-ply laminate, and a fabric laminate. Two FBG/EFPI hybrid sensors were embedded in each laminate at different directions and different locations. We performed the real time monitoring of fabrication strains and temperatures at two points within the composite laminates during cure process in an autoclave. Throuhg these experiments, FBG/EFPI sensors proved to be an efficient choice for smart cure monitoring of composite structures.

Simultaneous Measurement of Strain and Temperature During and After Cure of Unsymmetric Composite Laminate Using Fiber Optic Sensors (비대칭 복합적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 측정)

  • 강동훈;강현규;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • In this paper, we present the simultaneous measurement of the fabricaition strain and temperature during and after cure of unsymmetric composite laminate uising fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPl) hybrid sensors are used to measure those measurands. The characteristic matrix of sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilized as a light source. FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate at different direction and different location. We perform the real time measurement of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

  • PDF

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.