• Title/Summary/Keyword: FT-NIR spectroscopy

Search Result 50, Processing Time 0.029 seconds

The application of Fourier transform near infrared (FT-NIR) spectroscopy in the wine industry of South Africa

  • Van Zyl, Anina;Manley, Marena;Wolf, Erhard E.H.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1257-1257
    • /
    • 2001
  • Fourier transform near infrared (FT-NIR) spectroscopy was used as a rapid method to measure the $^{o}Brix$ content and to discriminate between different must samples in terms of their fee amino nitrogen (FAN) values. FT-NIR spectroscopy was also used as a rapid method to discriminate between Chardonnay wine samples in terms of the status of the male-lactic fermentation (MLF). This was done by monitoring the conversion of malic to lactic acid and thereby determining whether MLF has started, is underway or has been completed followed by classification of the samples. Furthermore, FT-NIR spectroscopy was applied as a rapid method to discriminate between table wine samples in terms of the ethyl carbamate (EC) content. EC in wine can pose a health threat and need to be monitored by determining the EC content in relation to the regulatory limits set by the authorities. For each of the above mentioned parameters, $QUANT+^{TM}$ methods were built and calibrations derived and it was found that a very strong correlation existed in the sample set for the FT-NIR spectroscopic predictions of $^{o}Brix$ (r = 0.99, SECV = 0.306), but the correlations for the FAN (r = 0.61, SECV = 272.1), malic acid (r = 0.58, SECV = 1.06), lactic acid (r = 0.51, SECV = 1.14) and EC predictions (r = 0.47, SECV = 3.67) were not as good. Soft Independent Modeling by Class Analogy (SIMCA) diagnostics and validation was applied as a sophisticated discrimination method. The must samples could be classified in terms of their FAN values when SIMCA was applied, obtaining results with recognition rates exceeding 80%. When SIMCA diagnostics and validation were applied to determine the progress of conversion of malic to lactic acid and the EC content, again results with recognition rates exceeding 80% were obtained. The evaluation of the applicability of FT-NIR spectroscopy measurement of FAN, $^{o}Brix$ values, malic acid, lactic acid and EC content in must and wine shows considerable promise. FT-NIR spectroscopy has the potential to reduce the analytical times considerably in a range of measurements commonly used during the wine making process. Where conventional FT-NIR calibrations are not effective, SIMCA methods can be used as a discriminative method for rapid classification of samples. SIMCA can replace expensive, time-consuming, quantitative analytical methods, if not completely, at least to some extent, because in many processes it is only needed to know whether a specific cut off point has been reach or not or whether a sample belongs to a certain class or not.

  • PDF

FT-NIR SPECTROSCOPY FOR QUALITY AND PROCESS CONTROL IN DEPTH FILTER SHEETS PRODUCTION

  • Jansen, Christoph;Ebert, Jurgen
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3122-3122
    • /
    • 2001
  • Documented quality control plays a vital role I the production of technical “Depth filter” sheets used in industries such as Beverage and pharmaceutical. Depth filter sheets which can be up to several millimeters thick are stacker in plate and frame filter systems. They are the core of stainless steel filter systems which can be up to several meters high. FT-NIR Spectroscopy has many potential applications in the whole production line of filter sheets. Raw materials such as different types of cellulose pads, white powdery fillers (e.g. Kieelgur, Perlite) or liquid chemicals such as wet-strength agents we, with the help of NIR, easy to identify. NIR can also determine physical parameters such as particle size, essential for the filtration behavior. FT-NIR can be used for the quality parameters of the final product. Moisture and permeability can be determined, and with the help of the speed of this NIR method it is possible to correct possible faults quickly in the production process. Waste production can be minimized which is good for both the product profitability and the environment. Further tests have shown that it is also possible to use NIR on-line in the production area, to check the concentrations and the homogeneity of the paper suspension consisting of cellulose fibres, fillers and additives.

  • PDF

Application of Fourier Transform Near-Infrared Spectroscopy for Prediction Model Development of Total Dietary Fiber Content in Milled Rice (백미의 총 식이섬유함량 예측 모델 개발을 위한 퓨리에변환 근적외선분광계의 적용)

  • Lee Jin-Cheol;Yoon Yeon-Hee;Eun Jong-Bang
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.608-612
    • /
    • 2005
  • Fourier transform-near infrared (FT-NIR) spectroscopy is a simple, rapid, non-destructive technique which can be used to make quantitative analysis of chemical composition in grain. An interest in total dietary fiber (TDF) of grain such as rice has been increased due to its beneficial effects for health. Since measuring methods for TDF content were highly depending on experimental technique and time consumptions, the application of FT-NIR spectroscopy to determine TDF content in milled rice. Results of enzymatic-gravimetric method were $1.17-1.92\%$ Partial least square (PLS) regression on raw NIR spectra to predict TDF content was developed Accuracy of prediction model for TDF content was certified for regression coefficient (r), standard error of estimation (SEE) and standard error of prediction (SEP). The r, SEE and SEP were 0.9705, 0.0464, and 0.0604, respectively. The results indicated that FT-NIR techniques could be very useful in the food industry and rice processing complex for determination of TDF in milled rice on real time analysis.

CHALLENGING APPLICATIONS FOR FT-NIR SPECTROSCOPY

  • Goode, Jon G.;Londhe, Sameer;Dejesus, Steve;Wang, Qian
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4112-4112
    • /
    • 2001
  • The feasibility of NIR spectroscopy as a quick and nondestructive method for quality control of uniformity of coating thickness of pharmaceutical tablets was investigated. Near infrared spectra of a set of pharmaceutical tablets with varying coating thickness were measured with a diffuse reflectance fiber optic probe connected to a Broker IFS 28/N FT-NIR spectrometer. The challenging issues encountered in this study included: 1. The similarity of the formulation of the core and coating materials, 2. The lack of sufficient calibration samples and 3. The non-linear relationship between the NIR spectral intensity and coating: thickness. A peak at 7184 $cm^{-1}$ was identified that differed for the coating material and the core material when M spectra were collected at 2 $cm^{-1}$ resolution (0.4 nm at 7184 $cm^{-1}$). The study showed that the coating thickness can be analyzed by polynomial fitting of the peak area of the selected peak, while least squares calibration of the same data failed due to the lack of availability of sufficient calibration samples. Samples of coal powder and solid pieces of coal were analyzed by FT-NIR diffuse reflectance spectroscopy with the goal of predicting their ash content, percentage of volatile components, and energy content. The measurements were performed on a Broker Vector 22N spectrometer with a fiber optic probe. A partial least squares model was constructed for each of the parameters of interest for solid and powdered sample forms separately. Calibration models varied in size from 4 to 10 PLS ranks. Correlation coefficients for these models ranged from 86.6 to 95.0%, with root-mean-square errors of cross validation comparable to the corresponding reference measurement methods. The use of FT-NIR diffuse reflectance measurement techniques was found to be a significant improvement over existing measurement methodologies in terms of speed and ease of use, while maintaining the desired accuracy for all parameters and sample forms.(Figure Omitted).

  • PDF

A Rapid Quantitative Assay of Intact Ambroxol Tablets by FT-NIR Spectroscopy

  • Kim, Do-Hyung;Ah, Woo-Young;Kim, Hyo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.213.2-213.2
    • /
    • 2003
  • A simple analytical procedure using FT-NIR for the rapid determination of individual ingredients was evaluated. Direct measurements were made by reflection using a reflectance accessory, by transmittance using tablet accessory and turn table. FT-NIR spectral data were transformed to the first derivative. Partial Least Square Regression(PLSR) was applied to quantify near-infrared (NIR) spectra of 2 ingredients. These calibration models were cross-validated (leave-one-out approach). The prediction ability of the models was evaluated on ambroxol tablets and compared with the real values in manufacturing procedure. (omitted)

  • PDF

Study on Rapid Measurement of Wood Powder Concentration of Wood-Plastic Composites using FT-NIR and FT-IR Spectroscopy Techniques

  • Cho, Byoung-kwan;Lohoumi, Santosh;Choi, Chul;Yang, Seong-min;Kang, Seog-goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.852-863
    • /
    • 2016
  • Wood-plastic composite (WPC) is a promising and sustainable material, and refers to a combination of wood and plastic along with some binding (adhesive) materials. In comparison to pure wood material, WPCs are in general have advantages of being cost effective, high durability, moisture resistance, and microbial resistance. The properties of WPCs come directly from the concentration of different components in composite; such as wood flour concentration directly affect mechanical and physical properties of WPCs. In this study, wood powder concentration in WPC was determined by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra from WPC in both powdered and tableted form with five different concentrations of wood powder were collected and preprocessed to remove noise caused by several factors. To correlate the collected spectra with wood powder concentration, multivariate calibration method of partial least squares (PLS) was applied. During validation with an independent set of samples, good correlations with reference values were demonstrated for both FT-NIR and FT-IR data sets. In addition, high coefficient of determination (${R^2}_p$) and lower standard error of prediction (SEP) was yielded for tableted WPC than powdered WPC. The combination of FT-NIR and FT-IR spectral region was also studied. The results presented here showed that the use of both zones improved the determination accuracy for powdered WPC; however, no improvement in prediction result was achieved for tableted WPCs. The results obtained suggest that these spectroscopic techniques are a useful tool for fast and nondestructive determination of wood concentration in WPCs and have potential to replace conventional methods.

Discrimination model for cultivation origin of paper mulberry bast fiber and Hanji based on NIR and MIR spectral data combined with PLS-DA (닥나무 인피섬유와 한지의 원산지 판별모델 개발을 위한 NIR 및 MIR 스펙트럼 데이터의 PLS-DA 적용)

  • Jang, Kyung-Ju;Jung, So-Yoon;Go, In-Hee;Jeong, Seon-Hwa
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • The objective of this study was the development of a discrimination model for the cultivational origin of paper mulberry bast fiber and Hanji using near infrared (NIR) and mid infrared (MIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA). Paper mulberry bast fiber was purchased in 10 different regions of Korea, and used to make Hanji. PLS-DA was performed using pre-treated FT-NIR and FT-MIR spectral data for paper mulberry bast fiber and Hanji. PLS-DA of paper mulberry bast fiber and Hanji samples, using FT-NIR spectral data, showed 100 % performance in cross validation and the confusion matrix (accuracy, sensitivity, and specificity). The discrimination models showed four regional groups which demonstrated clearer separation and much superior score plots in the NIR spectral data-based model than in the MIR spectral data-based model. Furthermore, the discrimination model based on the NIR spectral data of paper mulberry bast fiber had highly similar score morphology to that of the discrimination model based on the NIR spectral data of Hanji.

Quantification of Skin Moisture in Hairless Mouse by using a Portable NIR System and a FT NIR Spectrometer (Photo Diode Array형의 휴대용 근적외 분광기와 FT 근적외 분광기를 이용한 Hairless Mouse 피부 수분 정량)

  • Suh, Eun-Jung;Woo, Young-Ah;Kim, Hyo-Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.115-121
    • /
    • 2005
  • In this study, the performance of a portable NIR system and a FT NIR spectrometer were compared to determine water content of hairless mouse skin. The stratum corneum parts wer e separated from the epidermal tissues by trypsin solution. NIR diffuse reflectance spectra of hairless mouse skin were acquired using a fiber optic probe. In the near infrared, water molecules show two clear absorption bands at 1450 nm from first overtone of O-H stretching and 1940 nm from the combination involving O-H stretching and O-H deformation. It was found that the variations of O-H absorption band according to water content. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed a good correlation between NIR predicted value and the absolute water content of separated hairless mouse skin, in vitro. For both the portable and the FT NIR spectrometer, These studies showed the possibility of a rapid and nondestructive skin moisture measurement using NIR spectroscopy. The portable NIR spectrometer with a photodiode arrays-microsensor could be more rapidly applied for the determination of water content with comparable accuracy with the performance of a FT spectrometer .

Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy

  • Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.

Study on non-destructive sorting technique for lettuce(Lactuca sativa L) seed using fourier transform near-Infrared spectrometer (FT-NIR을 이용한 상추(Lactuca sativa L) 종자의 비파괴 선별 기술에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Kang, Jum-Soon;Lee, Kang-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • Nondestructive evaluation of seed viability is one of the highly demanding technologies for seed production industry. Conventional seed sorting technologies, such as tetrazolium and standard germination test are destructive, time consuming, and labor intensive methods. Near infrared spectroscopy technique has shown good potential for nondestructive quality measurements for food and agricultural products. In this study, FT-NIR spectroscopy was used to classify normal and artificially aged lettuce seeds. The spectra with the range of 1100~2500 nm were scanned for lettuce seeds and analyzed using the principal component analysis(PCA) method. To classify viable seeds from nonviable seeds, a calibration modeling set was developed with a partial least square(PLS) method. The calibration model developed from PLS resulted in 98% classification accuracy with the Savitzky-Golay $1^{st}$ derivative preprocessing method. The prediction accuracy for the test data set was 93% with the MSC(Multiplicative Scatter Correction) preprocessing method. The results show that FT-NIR has good potential for discriminating non-viable lettuce seeds from viable ones.