Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.
Boron nitride nanotubes (BNNT) are materials of significant interest in next-generation technological fields due to their outstanding physicochemical properties, including excellent chemical and thermal stability. However, for effective utilization, dispersion of BNNT is essential. Unfortunately, BNNT exhibit hydrophobic surfaces and strong van der Waals forces, making their dispersion challenging. Current dispersion methods include the addition of surfactants and surface functionalization, but these chemical treatments often damage BNNT and involve cumbersome processes. In this study, we dispersed BNNT in water under various tip ultrasonication conditions and identified conditions that do not affect BNNT using FT-IR spectroscopy, Raman spectroscopy, and X-ray diffraction analysis. Subsequently, enhanced dispersibility was confirmed through turbidity measurements, and the solubility range in 15 different solvents was evaluated using the Hansen solubility parameter.
As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775
The structural evolution during the thermal treatment of $70SiO_2-3OTiO_2(mole%)$ sol-gel derived powders and films was investigated by FT-IR, Raman and XPS, and XRD. From these results, the $TiO_2-rich$ regions involving $Ti^{4+}$ ions in octahedral coordination were confirmed to be amorphous at $600^{\circ}C$. However, Raman spectra along with XRD patterns indicated that at high temperature (above $700^{\circ}C)$, the amorphous $TiO_2was$ segregating to form anatase crystal. Also, the effect of experimental variables such as thermal treatment, heating rate and exposure to water vapor on structural changes, refractive index and thickness of the film coated on sodalime-silicate glass were investigated.
Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
Macromolecular Research
/
v.15
no.4
/
pp.343-347
/
2007
Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.
RGB light emitting ZnSe based nanocrystals: ZnSe (blue), ZnSe:Cu (green) and ZnSe:Mn (red) were synthesized by capping the surface of the nanocrystals with oleic acid. The obtained nanocrystal powders were characterized by using XRD, HR-TEM, ICP-AES, FT-IR, and FT-Raman spectroscopies. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 471 nm (ZnSe), 530 nm (ZnSe:Cu) and 665 nm (ZnSe:Mn), with relative PL efficiencies in the range of 0.7% to 5.1% compared to a reference organic dye standard. The measured average particle sizes from the HR-TEM images for those three nanocrystals were 4.5 nm on average, which were also supported well by the Debye-Scherrer calculations. The elemental compositions of the ZnSe based nanocrystals were determined by ICP-AES analyses. Finally, the drawn CIE diagram showed the color coordinates of (0.15, 0.16) for ZnSe, (0.22, 0.57) for ZnSe:Cu, and (0.62, 0.35) for ZnSe:Mn respectively, which were fairly well matched to that of the RGB color standards.
Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.
The patterns in X-ray diffraction (XRD) spectroscopy provide useful clue at $29.4^{\circ}$ to discriminate two types of Akoya cultured pearl which occurs difference of surface luster. Using the optical microscope, we could be confirmed that the nareous layer of each sample consist of different crystal form. In Fourier Transform Infrared (FT-IR) Spectroscopy analysis, the nareous layer of Akoya cultured pearls with poor luster shows some peaks at 712, 699, 1435, $1444cm^{-1}$ region and these peaks depend on the Calcite. But the nareous layer of pearls with excellent luster could not observed those peaks related with Calcite, we could observed Aragonite band at 699, $1085cm^{-1}$ region. Though this result, we know that the nareous layer of Akoya cultured pearls with excellent luster is mainly composed by Aragonite. Raman bands are also clearly demonstrated to occur difference of band intensity by difference of Aragonite content. In the Scanning Electron Microscope (SEM) analysis, we found that the Akoya cultured pearl luster and surface condition is associated with internal structure.
Graphene and polyaniline with thermoelectric properties are one of the potential substitutes for inorganic materials for flexible thermoelectric applications. In this study, we studied the photo-induced thermoelectric effect of graphene-polyaniline composites. The graphene-polyaniline composites were synthesized by introducing an amine functional group to graphene oxide for covalently connecting graphene and polyaniline, reducing the graphene oxide, and then polymerizing the graphene oxide with aniline. Graphene-polyaniline composites were prepared by changing the aniline contents in order to expect an optimal photothermoelectric effect, and their structural properties were confirmed through FT-IR and Raman analysis. The photocurrent and photovoltage characteristics were analyzed by irradiating light asymmetrically without an external bias and the current and voltage with various aniline contents. While the photocurrent trends to the electrical conductivity of the graphene-polyaniline composites, the photovoltage was related to the temperature change of the graphene-polyaniline composite, which was converted into thermal energy by light.
Lignin is compatible with various polymeric materials and useful as a carbon precursor. In this work, carbon monolith films were produced from polyacrylonitrile (PAN)@lignin precursor films by a controlled carbonization cycle. In addition, their morphological features, electrical properties, and adsorption behavior were analyzed and compared with those of carbonized PAN films. The successful formation of PAN@lignin precursor was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. SEM was used to examine the morphology of precursor and carbonized films, revealing that both precursor and carbonized films retained structural stability following carbonization. A trace of lignin in the carbonized films was also found. The pore structure of the carbonized PAN@lignin film was measured using the BET method, indicating the formation of fairly uniform pores. The electrical properties were also analyzed to obtain the Ohmic relation, which demonstrated that the electrical signal was influenced by incoming materials. Finally, the carbonized PAN@lignin films were useful as adsorbents to remove metal ions. This study provides important information for future initiatives in relevant research fields.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.