• Title/Summary/Keyword: FSR sensor array

Search Result 5, Processing Time 0.018 seconds

Implementation of Cushion Type Posture Discrimination System Using FSR Sensor Array (FSR 센서 어레이를 이용한 방석형 자세 판별시스템의 구현)

  • Kim, Mi-Seong;Seo, Ji-Yun;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • Recently, modern people are increasing the incidence of various musculoskeletal diseases due to wrong posture. Prevention is possible through proper posture habit, but it is not easy to recognize posture by oneself. Various studies have been conducted to monitor persistent posture in daily life, but most studies using constrained measurement methods and high-cost measurement equipment are not suitable for daily life. In this paper, we implemented a posture discrimination system using a FSR sensor array that can induce posture correction spontaneously through sitting posture monitoring in daily life. The implemented system is designed as a cushion type so it is easy to apply to existing chair. In addition, it can identify five most common postures in everyday life, and can monitor real-time through Android-based smart-phone monitoring application. For the performance evaluation of the implemented system, each posture was measured 50 times repeatedly. As a result, 97.6% accuracy was confirmed.

Design and Implementation of a Readout Circuit for a Tactile Sensor Pad Based on Force Sensing Resistors (FSR로 구성된 촉각 센서 패드용 Readout 회로의 설계 및 구현)

  • Yoon, Seon-ho;Baek, Seung-hee;Kim, Cheong-worl
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.331-337
    • /
    • 2017
  • A readout circuit for a tactile sensor pad based on force sensing resistors was proposed, which was composed of an analog signal conditioning circuit and a digital circuit with a microcontroller. The conventional signal conditioning circuit has a dc offset voltage in the output signal, which results from the reference voltage applied to the FSR devices. The offset voltage reduces the dynamic range of the circuit and makes it difficult to operate the circuit under a low voltage power supply. In the proposed signal conditioning circuit, the dc offset voltage was removed completely. The microcontroller with A/D converter and D/A converter was used to enlarge the measurement range of pressure. For this, the microcontroller adjusts the FSR reference voltage according to the resistance magnitude of FSR under pressure. The operation of the proposed readout circuit which was connected to a tactile sensor pad with $5{\times}10$ FSR array was verified experimentally. The experimental results show the proposed readout circuit has the wider measurement range of pressure than the conventional circuit. The proposed circuit is suitable for low voltage and low power applications.

Recognition of Stance Phase for Walking Assistive Devices by Foot Pressure Patterns (족압패턴에 의한 보행보조기를 위한 입각기 감지기법)

  • Lee, Sang-Ryong;Heo, Geun-Sub;Kang, Oh-Hyun;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • In this paper, we proposed a technique to recognize three states in stance phase of gait cycle. Walking assistive devices are used to help the elderly people walk or to monitor walking behavior of the disabled persons. For the effective assistance, they adopt an intelligent sensor system to understand user's current state in walking. There are three states in stance phase; Loading Response, Midstance, and Terminal Stance. We developed a foot pressure sensor using 24 FSRs (Force Sensing/Sensitive Resistors). The foot pressure patterns were integrated through the interpolation of FSR cell array. The pressure patterns were processed to get the trajectories of COM (Center of Mass). Using the trajectories of COM of foot pressure, we can recognize the three states of stance phase. The experimental results show the effective recognition of stance phase and the possibility of usage on the walking assistive device for better control and/or foot pressure monitoring.

Implement the system of the Position Change for Obstructive sleep apnea patient (폐쇄성수면 무호흡 환자의 자세변환 시스템 구현)

  • Ye, Soo-young;Eum, Sang-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1231-1236
    • /
    • 2017
  • In this study, we developed a system that can change position to improve obstructive sleep apnea. Blocking of the breathing airway caused by obstruction of the apnea, lateral position is provided by the airway to improve the apnea. We used a pressure sensor (FSR402) in the form of an array to determine the position of patient. The air cylinder was controlled to raise and lower the bed. As a result of calculating the pressure difference between the supine position and the lateral position, it was $0.41{\pm}0.30$ and $1.09{\pm}0.73$. In other words, when the patient is lateral position, the difference between the sensor values on the right and left side is large. Therefore, it is confirmed that the system can maintain airway to breath for improvement of obstructive sleep.

A Multi-tier Based Lying Posture Discrimination Algorithm Using Lattice Type Pressure Sensors Allocation (격자형 압력 센서 배치 구조를 이용한 다층 기반 누운 자세 판별 알고리즘)

  • Cho, Min Jae;Hong, Youn-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.402-409
    • /
    • 2019
  • Patients with dementia or elderly patients who can not move at all by themselves are at a high risk of falls and bedsore due to lack of caregivers. In this paper, to solve this problem, we propose an algorithm to determine the patient's lying postures by discriminating the main body parts such as head, shoulders, and hips based on the pressure intensity sensed at regular intervals. A smart mat with a lattice structure in which a pressure sensor is arranged so that the body part can be discriminated irrespective of the physical characteristics has been implemented. It consists of two modules of $7{\times}7$ array size. Each module consists of 49 FSR-406 sensors and independently senses pressure. For each module, the body part corresponding to the upper body or the lower body is sequentially discriminated by using a pressure distribution such as a cumulative pressure sum using a filter. The proposed algorithm can identify five lying positions by examining the inclusion relationship between body parts belonging to layer-1 such as head, shoulder, and hip area.