• 제목/요약/키워드: FSI Method

검색결과 171건 처리시간 0.022초

하이브리드복합소재 적층방법에 따른 1kW 블레이드의 강도평가 (An Evaluation of Strength of 1kW Blade according to the change in Hybrid composit meterials)

  • 이강일;이길성;선민영;소병욱;임재규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.41.1-41.1
    • /
    • 2011
  • 풍력블레이드는 가벼워야 하며 강도면에서 신뢰성이 확보되어야한다. 최근 들어 복합소재를 적용한 블레이드가 많이 선보이고 있다. 현재 가장 많이 사용되는 유리섬유/에폭시는 경제성 및 강도면에서 우수하여 많이 사용되어왔다. 본 논문에서는 유리섬유(80%)-탄소섬유(20%)/에폭시를 사용하여 강도를 높이고 무게를 경감시켜 효율을 증가시키고자 연구하였다. 국내 풍황에 적합한 1kW급 풍력블레이드의 Airfoil을 개발하여 강도를 평가하고 블레이드를 최적화 설계하였다. 유리섬유(80%)-탄소섬유(20%)가 적용된 복합재를 적층방법에 따라 실험하고 이를 블레이드 강도평가에 적용하였으며 FSI (Fluid-Structure Interaction)를 사용하였다. 이를 통해 블레이드의 무게경감 및 강도가 향상되었다.

  • PDF

VSI EWIMA 관리도의 경제적 설계 (An Economic Design of the EWMA Control Charts with Variable Sampling Interval)

  • 송서일;정혜진
    • 품질경영학회지
    • /
    • 제30권4호
    • /
    • pp.1-14
    • /
    • 2002
  • Traditional SPC techniques are looking out variation of process by fixed sampling interval and fixed sample size about every hour, the process of in-control or out-of-control couldn't be detected actually when the sample points are plotted near control limits, and it takes no notice of expense concerned with such sample points. In this paper, to overcome that, consider VSI(variable sampling interval) EWMA control charts which VSI method is applied. The VSI control charts use a short sampling internal if previous sample points are plotted near control limits, then the process has high probability of out-of-control. But it uses a long sampling interval if they are plotted near centerline of the control chart, since process has high possibility of in-control. And then a comparison and analysis between FSI(fixed sampling interval) and VSI EWMA in the statistical aspect and economic aspect is studied. Finally, we show that VSI EWMA control chart is more efficient than FSI EWMA control chart in the both aspects.

고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구 (A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump)

  • 고성위;김병탁
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

더미 및 실 블레이드 안테나 조류충돌 해석 및 시험 (Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna)

  • 정한의
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.24-31
    • /
    • 2018
  • 항공기의 블레이드 안테나에 대해 더미와 실 안테나의 조류충돌 해석과 시험을 수행하였다. 해석에서 조류는 SPH(Smooth Particle Hydrodynamics) 방법을 이용하여 모델링하였으며, 유체-구조 연성해석 (FSI, Fluid-Structure Interaction) 기법으로 조류와 안테나, 기체 체결부의 거동을 시뮬레이션 하였다. 실제 조류를 사용한 시험을 수행하여 안테나와 동체 사이의 체결부 손상 및 이탈여부를 확인하였으며, 항공기 기체의 구조건전성과 해석 및 시험 결과 사이의 상관성이 있음을 입증하였다.

Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Cho, Jin-Rae;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.1-20
    • /
    • 2013
  • In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

Study on Vortex-Induced Vibration Predictions for Ship Rudders

  • Jang, Won-Seok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.325-333
    • /
    • 2020
  • As regulations concerning ship vibration and noise are becoming stricter, considerable attention is being drawn to prediction technologies for ship vibration and noise. In particular, the resonance and lock-in phenomena caused by vortex-induced vibration (VIV) have become considerably important with increases in the speed and the size of ships and ocean structures, which are known to cause structural problems. This study extends the fluid-structure interaction (FSI) analysis method to predict resonances and lock-in phenomena of high modes and VIV of ship rudders. Numerical stability is secured in underwater conditions by implementing added mass, added damping, and added stiffness by applying the potential theory to structural analysis. An expanded governing equation is developed by implementing displacements and twist angles of high modes. The lock-in velocity range and resonant frequencies of ship rudders obtained using the developed FSI method agree well with the experimental results and the analytic solution. A comparison with local vibration guidelines published by Lloyd's Register shows that predictions of resonances and lock-in phenomena of high modes are necessary in the shipbuilding industry due to the possible risks like fatigue failure.

유체-구조 연성해석 기반 해저케이블 위해인자의 수중낙하 특성 비교 (Comparison of Underwater Drop Characteristics for Hazard Apparatuses on Subsea Cable Using Fluid-Structure Interaction Analysis)

  • 장경호;김정훈;송창용
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.324-332
    • /
    • 2018
  • It is known that damages to the subsea cables used for electric power transmission between islands and countries, including renewable energy from offshore wind power, current, tides, etc., cost much to restore, which causes social and economic losses. Various types of fishing rigs and anchors have been reported to be the greatest hazards to subsea cables. It is possible to design and construct a suitable protection facility for a subsea cable by precisely estimating the underwater behavior of such hazardous apparatuses. In this study, numerical simulations of the underwater behaviors of various hazardous apparatuses were carried out using fluid-structure interaction (FSI) analysis as a basic study to simulate the actual behavior phenomena of hazardous apparatuses in relation to a subsea cable. In addition, the underwater drop characteristics according to the types of hazardous apparatuses were compared. In order to verify the accuracy of the FSI analysis method used in this study, we compared the test results for underwater drops of a steel ball bearing. Stock anchors, stockless anchors, and rocket piles, which were actually reported to be the cases of damage to subsea cables along the southwest coast of Korea, were considered as the hazardous apparatuses for the numerical simulations. Each hazardous apparatus was generated by a Lagrangian model and coupled with the fluid domain idealized by the Eulerian equation to construct the three-dimensional FSI analysis model. The accuracy of the numerical simulation results was verified by comparing them with the analytical solutions, and the underwater drop characteristics according to the types of hazard apparatuses were compared.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

FSI를 활용한 2차원 곤충날개 주위 유동장 해석 (NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION)

  • 이근배;김진호;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성 (Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects)

  • 김동현;김유성;김요한;김석수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF