• 제목/요약/키워드: FRP Composite Materials

검색결과 200건 처리시간 0.027초

유리섬유강화 플라스틱의 LNG 저장탱크용 합판 대체 가능성 평가 (Estimation for Adaptability of Fiber Reinforced Plastic Composite for LNG Storage Tank)

  • 김상범;조정미;조세현;권영수
    • 한국가스학회지
    • /
    • 제7권1호
    • /
    • pp.28-32
    • /
    • 2003
  • 대체 facing material 소재로 유력시되는 FRP를 사용하여 facing material이 갖추어야할 압축, 인장 등 기계적 물성과, vapor barrier도, 화학적 안전성 등을 조사한 결과 모든 면에서 기존의 plywood보다 우수한 성질을 나타냄을 밝혔다. 본 연구의 결과로서 대체 facing material로 FRP를 사용할 경우 LNG 저장 탱크의 안전성이 향상되고 높은 vapor barrier기능으로 인해 탱크의 성능이 향상되는 등 다양한 장점을 나타냄을 알 수 있게 되었다. 따라서 본 연구의 결과는 LNG 저장 탱크의 성능을 개선하는데 기여하며, LNG 저장 탱크용 합판의 대체연구에 적극적으로 활용될 수 있을 것으로 사료된다.

  • PDF

FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구 (Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members)

  • 최기선;유영찬;이한승;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

섬유보강폴리머(FRP) 복합재료의 교량 적용 (A Successful Beginning for Fiber Reinforced Polymer(FRP) Composite Materials in Bridge Applications)

  • 김지상
    • 콘크리트학회지
    • /
    • 제13권5호
    • /
    • pp.77-81
    • /
    • 2001
  • 부식 열화는 교량 기술자들에게 있어서 지속적인 도전을 요구하는 문제가 되어왔는데, 스텔스 항공기를 개발하게 한 새로운 재료 기술은 교량의 부식을 해결할 수 있게 하였다. 즉, 경량의 고강도 재료로 높은 피로 저항성을 갖고 있고, 부식에 강한 복합체는 교량의 재료로서 아주 바람직한 성질을 갖고 있다 섬유 보강 폴리머(FRP) 복합재료를 교량의 건설에 이용하려는 프로젝트는 1998년 현재 80 여 개가 넘게 진행되고 있는데, 이 중 미국 내에서 31개의 프로젝트가 수행되고 있다. 이 글은 미국 내에서 FRP복합체를 교량 공학 분야에 적용하려는 초기의 성공적인 시도들에 관한 내용으로 복합체의 장점, 특성, 교량 적용시 고려 사항, 그리고 향후 복합재료에 관한 기술을 토목 구조물에 적용하는데 필요한 소요 기술 등에 관하여 정리한 것이다. 이 새로운 재료는 신설 구조물의 건설과 기존 교량의 보수 및 보강에 모두 적용할 수 있으며, FRP복합체 기술을 토목 구조물과 기반 시설물 건설 분야에 적용하는 것은 지금까지 성공적인 결과를 보여 주고 있다 미국연방도로국(FHWA, Federal Highway Administration)은 이 기술을 미국 내 교통 기반 시설물인 신규 교량의 건설은 물론 기즌 교량의 보수 및 보강에 활용하는 방안에 대하여 관심을 갖고 있다.

FRP 선체구조용 접착제의 접착강도 평가 (Strength Evaluation for Adhesive Bonds of Adhesive with FRP Ship Body Structure)

  • 안석환;최한규;남기우
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.146-152
    • /
    • 2010
  • Recently, the applied frequency of composite materials was increased from the viewpoint of lightweight, high strength and low cost when a leisure boat and a fishing boatwere built. However, studies on the mechanical properties of composite material with ship are rare. Specially, a leisure boat and fishing boat with FRP had been built by hand lay-up method. However, the vacuum infusion method is rising recently for ship building. The manufactured these FRP plates were combined by using the adhesive. Therefore, in this study Cleavage peel strength, Shear strength and fatigue limit of adhesive bonds by tensileloading were estimated. From test results, the strengths of FRP specimens made by the vacuum infusion method are higher than that of the hand lay-up method.

RC보에 대한 FRP-Aluminum 유공복합보의 보강성능에 관한 연구 (Performance of RC Beams Strengthened with FRP-Aluminum Composite Hollow Beam Under the Fire)

  • 이재익;최열
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.153-160
    • /
    • 2010
  • 다양한 요인에 의해 성능이 저하된 철근콘크리트 구조물은 보수 보강 공법이 요구된다. 현재 다양한 공법과 신소재를 이용한 보강법의 개발이 진행 중에 있다. 최근에 섬유보강 복합체(FRP)를 이용한 보강공법이 주목받고 있으며, 많은 연구와 개발이 진행 중에 있다. 본 논문에서는 FRP-알루미늄 유공복합보로 보강된 RC보의 화재거동에 관한 실험결과를 제시하고자 한다. 사전가력으로 손상시킨 RC보에 FRP-알루미늄 유공복합보로 보강후 화재노출시킨 결과, 손상율이 높아질수록 화재노출에 더욱 많은 영향을 받았으며, 보강효과가 떨어짐을 실험결과 나타났다.

Dynamic assessment of a FRP suspension footbridge through field testing and finite element modelling

  • Votsis, Renos A.;Stratford, Tim J.;Chryssanthopoulos, Marios K.;Tantele, Elia A.
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.205-215
    • /
    • 2017
  • The use of advanced fibre composite materials in bridge engineering offers alternative solutions to structural problems compared to traditional construction materials. Advanced composite or fibre reinforced polymer (FRP) materials have high strength to weight ratios, which can be especially beneficial where dead load or material handling considerations govern a design. However, the reduced weight and stiffness of FRP footbridges results in generally poorer dynamic performance, and vibration serviceability is likely to govern their design to avoid the footbridge being "too lively". This study investigates the dynamic behaviour of the 51.3 m span Wilcott FRP suspension footbridge. The assessment is performed through a combination of field testing and finite element analysis, and the measured performance of the bridge is being used to calibrate the model through an updating procedure. The resulting updated model allowed detailed interpretation of the results. It showed that non-structural members such as the parapets can influence the dynamic behaviour of slender, lightweight footbridges, and consequently their contribution must be included during the dynamic assessment of a structure. The test data showed that the FRP footbridge is prone to pedestrian induced vibrations, although the measured response levels were lower than limits specified in relevant standards.

UV 경화 수지의 화학적 기계적 경화특성 분석 (Analysis of Chemical and Mechanical Properties of UV Curing Resin)

  • 장용수;김정근;고선호;곽이구
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.88-95
    • /
    • 2020
  • Currently, Fiber-Reinforced Plastic (FRP) composite materials are used in many industrial fields, owing to their superior stiffness and specific strength compared to metals. However, there are issues with FRP inefficiency, due to low productivity of such materials, environmental problems they pose and long curing times needed. Trying to address these issues, research was conducted towards the development of a FRP composite material with excellent properties and short production time, introducing a curing method using a UV lamp. Four types of composite materials were prepared, cured with catalyst or UV (CZ: Catalyst + ZNT 6345, CR: Catalyst + RF 1001 MV, UVZ: Photoinitiator + ZNT 6345, and UVR: Photoinitiator + RF 1001 MV). Examination of the chemical and mechanical properties of these composites showed that UV-cured materials performed better than the catalyst-cured ones. These results indicate that the production process of FRP composite materials can be simplified by using a UV lamp for curing, resulting in composite materials with the same quality, but reduced production time by about 70% compared to currently used practices. This advancement will contribute greatly to the composite material industry.

조립식 영구 쏘일네일링 공법의 개발을 위한 FRP평판의 휨해석에 관한 연구 (A Study on the Flexural Analysis of FRP Plate to Develop Fabricated Permanent Soil Nailing System)

  • 최훈;주형중;남정훈;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.180-183
    • /
    • 2005
  • Application of the soil nailing system is continuously extended to stabilize excavations and slopes. Although there are many applications in the construction site, the system is still needed to improve its mechanical performance and durability. So, the use of FRP for this system can be an alternative for the conventional system. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering applications due to their superior mechanical and physical properties. This paper presents an experimental and theoretical study on the flexural behavior of FRP plate to develop fabricated permanent soil nailing system. In this study, mechanical properties of FRP plate have been investigated. Rectangular FRP plates that is simply supported and uniformly loaded over the area of a circle at the center of plate are analyzed by experiment, classical plate theory, and finite element method. From the results of analysis we can determine the shape of curved FRP plate which will exert certain amount of prestressing force in soil nail.

  • PDF

Bond strength characterization and estimation of steel fibre reinforced polymer - concrete composites

  • Jahangir, Hashem;Eidgahee, Danial Rezazadeh;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.803-816
    • /
    • 2022
  • Composite materials are effective in forming externally bonded reinforcements which find applications related to existing structures repair, attributed to their high strength-to-weight ratio and ease of installation. Among various composites, fibre reinforced polymers (FRP) have somewhat been largely accepted as a commonly utilized composite for such purposes. It is only recently that steel fibres have been considered as additional members of the FRP fibre family, intuitively termed as steel reinforced polymer (SRP). Owing to its low cost and permissibility of fibre bending at sharp corners, SRP is rapidly becoming a viable contender to other FRP systems. This paper investigates the bond behaviour of SRP-concrete joints with different bonded lengths (50, 75, 100, 150 and 300 mm) and widths (15, 30, 40, 50, and 75 mm) using single-lap shear tests. The experimental specimens contain SRP strips with a fixed density of steel fibres (0.472 cords/mm) bonded to the face of concrete prisms. The load responses were obtained and compared in terms of corresponding load and slip boundaries of the constant region and the peak loads. The failure modes of SRP composites are discussed, and the range of effective bonded length is evaluated herein. In the end, a new analytical model was proposed to estimate the SRP-concrete bond strength using a genetic algorithm, which outperforms 22 existing FRP-concrete bond strength models.

FRC를 적용한 FRP-콘크리트 합성보의 거동특성 (Behavior Characteristics of FRP-Concrete Composite Beam using FRC)

  • 조정래;조근희;김병석;진원종;김성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF