• Title/Summary/Keyword: FRP 접착제

Search Result 17, Processing Time 0.022 seconds

Measuring and Correcting The Compressive Axial Strain of Concrete Cylinders Retrofitted by External Jackets (외부자켓에 의해 보강된 콘크리트 압축시편의 압축변형률 측정 및 보정)

  • Choi, Eun-soo;Lee, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.215-222
    • /
    • 2009
  • In this study, steel and FRP jackets are used to confine concrete cylinders. The FRP jacket behaviors compositely with concrete since there is bonding between them. However, the used steel jacket in this study do not behavior compositely with concrete since there is not an adhesive between them. The steel jackets are attached by external forces and the welding. This study suggests the measuring method of the axial strain for the confined concrete cylinders showing noncomposite behavior with the jackets and the correcting method of the measured strain for the composite-behavior jackets. For the noncomposite-behavior steel jacket, the axial strain of the steel surface does not represent the axial strain of the concrete inside. Also, a compressormeter can not be used. Thus, the two rigid plates at the top and bottom of a cylinder are placed and the distance of the two plates are measured and used for estimating the axial strain of the concrete. For the composite-behavior FRP jacket, the vertical strain measured on the FRP surface can be used for estimating the axial strain of the concrete. However, the vertical strain on the FRP surface contains the tensile strain due to the bulge of the concrete and, thus, the tensile strain should be corrected from the vertical strain. The corrected verticals strains compared with the measured strain or a existing constitute model; the result is satisfactory. The uncorrected stress-strain curves have the potential to under estimate the ductile behavior and the energy-dissipation-capacity of the composite-behavior FRP jackets.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.

Development of Ultrasonic Testing Method for Evaluation of Adhesive Layer of Blaster Tube (토출관 접합계면 평가를 위한 초음파 시험법 개발)

  • Kim, Y.H.;Song, S.J.;Park, J.S.;Cho, H.;Lim, S.Y.;Yun, N.G.;Park, Y.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 2004
  • Ultrasonic testing method has been developed to evaluate flaw of adhesive layers in blast tube for the reliability of the rocket nozzle. The ultrasonic reflection from the interface between the steel sheet and the epoxy adhesive is measured with a high-frequency Pulse-echo setup in order to identify contact debonding and missing adhesive in epoxy layer between steel and FRP layers. The steel sheet is resonated by low-frequency ultrasound, and the gap size underneath the measuring location is estimated from the resonance responses. For practical application in industry an automated testing system has been developed where the proposed approach is implemented. The performance of the proposed approach has been verified by actual measurement of gap sizes from the cross-sections of cut specimens using an optical microscope.

Development of ultrasonic testing method for the evaluation of adhesive layer of blast tube (토출관 접합계면 평가를 위한 초음파 시험법 개발)

  • Kim, Y.H.;Song, S.J.;Park, J.S.;Cho, H.;Lim, S.Y.;Yun, N.G.;Park, Y.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.230-237
    • /
    • 2003
  • Ultrasonic testing method has been developed to evaluate adhesive layers in blast tube for the reliability of the rocket. The main objective of the present work was to find debonding and missing adhesive in epoxy layer between steel and FRP layers. In this approach, the ultrasonic reflection from the interface between the steel sheet and the epoxy adhesive is measured with a high-frequency pulse-echo setup in order to identify contact debonding and missing adhesive. Then, the steel sheet is excited to resonance by low-frequency ultrasound, and the gap size underneath the measuring location is estimated from the resonance responses. For practical application in industry an automated testing system has been developed where the proposed approach is implemented. The performance of the proposed approach has been verified by actual measurement of gap sizes from the cross-sections of cut specimens using an optical microscope.

  • PDF

A Study on Bond Strength of Cement-Based Filler and Flexural Strength of RC Beam Strengthened with GFRP by Filler Thickness (시멘트계 충진제의 접착 성능 및 보강 두께에 따른 GFRP 보강 RC보의 휨 성능에 대한 연구)

  • Choi, Ha-Jin;Choi, Young-Woong;Park, Jong-Chul;Jung, Si-Young;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.144-152
    • /
    • 2010
  • In this study, cement-based filler is used as an adhesive instead of organic adhesive, epoxy because there were problems under wet condition. First, the bond strength of cement-based filler was measured and the result was satisfied with KS F 4716. However, in case of wet condition, bond strength of epoxy adhesive decreased $0.73N/mm^2$ in 7 days and $0.84N/mm^2$ in 14 days from pilot test. This implies that there would be a problem on reinforced concrete structure in wet condition, such as tunnel and sewage box. In the second experiment, the flexural strength of RC beams with GFRP using different thickness of cement-based filler was investigated, and the result was indicated 113%, 66%, 75% increase in 10mm, 20mm, 30mm thickness, respectively. From the result, it was known that 10mm filler thickness produces stable bond performance.

Experimental Study on the Flexural Performance of Steel Beams Reinforced by AFRP Sheets (아라미드 섬유 쉬트를 이용한 철골 보 부재의 휨 보강 성능에 관한 실험적 연구)

  • Kim, Kang Seok;Nah, Hwan Seon;Kim, Kang Sik;Lee, Hyeon Ju;Lee, Kang Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • Fiber Reinforced Plastic (FRP) sheets have been widely used to retrofit and rehabilitate RC structures, while in case of retrofitting steel structures, there are no codes and researches. It stems from configuration of member and characteristics of bonding behavior. This study focused on the static behavior of steel beams reinforcement by AFRP sheets. The main objective of the experimental programme was the evaluation of the force transfer mechanism, the increment of the beam load carrying capacity and the bending stiffness. A bending test was conducted on a H-shaped steel beam, with aramid FRP sheets bonded to its flanges. The mid-span deflection and the strain from three points along AFRP sheets were recorded Test results exhibit that the increment of the load-carrying capacity with reference to a mid-span deflection level of 15 mm(1/125mm of the clear span) was equal to 9.4% and for the two layers case, an elastic stiffness increment is slightly higher than one layer case.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.