• Title/Summary/Keyword: FRP 바닥판

Search Result 53, Processing Time 0.016 seconds

Shear Strength Prediction of FRP RC Baem without Shear Reinforcements (전단 보강이 없는 FRP RC보의 전단강도 예측)

  • Lee, Jae-Hoon;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.313-324
    • /
    • 2010
  • There are many problems in application of FRP reinforcing bars as shear reinforcement, since bending of FRP bars is not a feasible process on construction site. Even though FRP bars can be manufactured in bent shape, they have lower strength at bent location. However, there are no serious problems to use FRP bars as flexural reinforcement. Plates or slabs like bridge decks, in general, do not need shear reinforcements. These types of members with FRP flexural reinforcement have lower shear strength than those with conventional steel flexural reinforcement. However, reliable process or equation for shear strength estimation of FRP reinforced concrete without shear reinforcement are not established, yet. In this study, predicted shear strength obtained from available design equations and assessment equations are compared with 211 experimental results. The results showed that among the current design codes, the Architectural Institute of Japan (AIJ) and the Institution of Structural Engineers (ISE) provided the best estimation. ACI 440.1R-06 provided conservative results with degree of dispersion similar to that of ISE. In addition, regression analysis on the collected experimental results was conducted to develop regression models. As a result, a new reliable shear strength equation was proposed.

Performance Evaluation of the High Durability Asphalt Mixture for Bridge Deck Pavements (고내구성 교면포장 아스팔트 혼합물의 공용성 평가에 관한 연구)

  • Park, Hee-Mun;Choi, Ji-Young;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.51-62
    • /
    • 2007
  • Recently, the pavement distresses in the bridge deck have seriously affected the durability of bridge deck and driver's safety. The existing asphalt materials have the limitations in reducing the pavement distresses of brides deck. To protect the bridge deck and withstand the high deflection, it is necessary to develop the asphalt materials with good fatigue resistance for bridge deck pavement. The asphalt binder combined with SBS and two other admixtures has been developed for improving the resistance to fatigue cracking, productivity, and workability for bridge deck pavement. Based on the various binder test results, the developed binder is found to be PG 70-34 indicating very higher resistance against fatigue cracking. Fatigue testing, wheel tracking testing, and moisture susceptibility testing have been conducted to evaluate the performance of asphalt mixtures developed in this study. Laboratory test results show that the developed asphalt material has three times higher fatigue lives than the typical modified asphalt mixture. Full scale accelerated testing was also performed on the typical asphalt mixture and newly developed asphalt mixture to evaluate the full scale performance of asphalt mixtures. Test results indicate that the length of cracking on the new materials is only 38% of the typical material at the 250,000 load repetitions.

  • PDF

Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck (GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자)

  • Cho, Jeong-Rae;Park, Young Hwan;Park, Sung Yong;Cho, Kunhee;Kim, Sung Tae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.