• 제목/요약/키워드: FPSO turret mooring

검색결과 17건 처리시간 0.02초

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.

탠덤 배치된 FPSO와 셔틀탱커의 비선형 운동 해석 (Nonlinear Motion Analysis of FPSO and Shuttle Tanker in a Tandem Configuration)

  • 임춘규;이호영;신현경
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.560-567
    • /
    • 2006
  • FPSO and shuttle tanker are connected to each other by a mooring hawser and a loading hose through which cargo oil is off-loaded. Even in mild sea-state. environmental loads can cause unstable large drift motions between two vessels in tandem off-loading operations, which may result in collision incidents. Accordingly. the analysis on the relative motion between two vessels due to the environmental loads should be investigated in initial design stage. In this study, the low speed maneuvering equation is employed to simulate nonlinear motions of FPSO and shuttle tanker. Low frequency wave drift forces including hydrodynamic interactions between two vessels are evaluated by near field approaches. Current loads are determined by mathematical model of MMG and wind loads are calculated by employing the wind spectrum according to the guidelines of API-RP2A. Mooring forces produced by turret mooring lines and a flexible hawser are modeled quasi-statically by catenary equations. The effect of environmental loads that affect nonlinear motion is investigated through variation in their magnitudes and the nonlinear motions between FPSO and shuttle tanker are simulated under wave, current and wind in time domain.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

원통형 문풀 구조물의 탑재 시 변형과 수정 (Welding Deformation and Its Correction of Cylindrical Moon Pool Structure)

  • 성우제;천광산
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.389-395
    • /
    • 2019
  • Turret mooring type Floating Production Storage and Offloading (FPSO) is designed to rotate the hull around a turret system. The system is mounted inside a cylindrical moon-pool structure of the ship hull structure. The upper part of the moon-pool structure called Bogie Support Structure (BSS) is supported on ring type rail structure (bogie), so high roundness is required at the top of the structure. In this study, the deformation measured during BSS installation was compared with the predicted values through the thermal elasto-plastic analysis, and the causes of deformation were analyzed. Deformation behavior of cylindrical structure with a very large diameter compared to the thickness was investigated. In addition, a proper welding sequence and correction method for the deformed structure were proposed. This study can be an example of the solution to the tolerance problem of large cylindrical structures.

Floating LNG 기반기술에 관한 설계개선 연구 (철회된 논문입니다.) (Research of Design Improvement regarding Foundation Technologies for Floating LNG)

  • 이동현;하문근;김수영;신성철
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.220-230
    • /
    • 2014
  • Typical technical issues associated with Floating LNG (FLNG: FSRU and LNG FPSO) design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this paper, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of design improvement including new LNG-related technologies such as combined containment system will be presented to overcome the unrevealed challenges for the FLNG development.

반투과성 부유 소파구조물의 소파 효율에 관한 연구 (A Study on efficiency of Semi-permeability Floating Breakwater)

  • 박노식;곽석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.197-201
    • /
    • 2002
  • 양식장 해양 레져, 항구 등에서 Calm Sea Area을 필요로 한다. 착저식은 소파효율은 좋으나 해수순환을 방해하여 환경에 좋지 않은 영향을 미치게 된다. 또한 설치비용이나 설치 해역의 한계가 있다. 따라서 이러한 한계들을 극복하기 위해서 부유식 소파구조물을 채택하였다. 본 논문에서는 몇 가지 소파공의 크기를 가지는 반 투과성 부유 소파구조물을 무한수심에서 유체역학적 특성과 소파효율을 계산하였다. 산란문제와 발산문제를 해결하기 위해 선형 포텐셜이론을 사용하여 구조물의 유체역학적 특성을 계산하였다. 적절한 소파공의 크기를 결정함에 따라 소파효율을 향상시킬 수 있다.

  • PDF

비대칭 위치의 수중 구조물 설치를 위한 러그 위치 산정 및 리프팅 동역학 해석 (Lug Arrangement and Dynamic Analysis of Lifting Simulation for Underwater Installation of Structure in Asymmetric Position)

  • 조아라;박광필;이현진
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.283-289
    • /
    • 2015
  • RGT(Riser Guide Tube) is a part of mooring on the bottom of a turret system to be connected with a production riser, and DBSC(Diverless Bend Stiffener Connector) is a latching component between them. In this paper, appropriate lug arrangement is decided mathematically for the case that a DBSC is lifted and installed on a RGT under the water while FPSO is under construction. Considering asymmetric arrangement & position of RGT and initial lug position, additional lug positions are determined by using an optimization method. The modified installation scheme with new lug points is investigated with a lifting simulation system, SIMSON. The simulation result shows that the installation of DBSC on RGT under the given conditions is quite feasible; therefore the mathematical method is proven to be appropriate.