• 제목/요약/키워드: FPSO roll

검색결과 16건 처리시간 0.022초

Motion and sloshing analysis for new concept of offshore storage unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.189-195
    • /
    • 2000
  • New concept of LNG-FPSO ship with moonpool and bilge step in bottom is considered and investigated in the point of motion reduction and sloshing phenomena of the cargo and operation tanks. The cargo capacity of the ship of which principle dimensions is L x B x D x t(design) =270.0 x 51.0 x 32.32 x 13.7(m) 16K at 98% loading condition. The two moonpools and rectangular step at bilge part are setted up specially for getting the effect of motion decrease. For the motion analysis, linearized three dimensional diffraction theory with the simplified boundary conditions is used. The six-degree of freedom coupled motion responses are calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel are taken into account in this calculation program using an empirical formula suggested by Ikeda, Himeno and Tanaka is used. The case study for the moonpool size had been carried out by theoretical estimation and experimental method. For the optimization of the moonpool size and effect of the step, 9 cases of its size and with and without step are considered. From the results of calculation and experiment, it can be concluded that this designed LNG-FPSO ship have possibility to carry out her missions in the rough sea as for the owner's demand waves condition. The motion responses, especially roll motion, for the designed LNG-FPSO ship are much lower than those of another drillship and shuttle tanker and limit criterions are satisfied. For the check of the cargo tank and operation tank sizes we have performed sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and No5. tanks of LNG-FPSO with chamfers. Finally we got the tank size which has no resonance and no impact pressure in all filling in the bow quartering and beam sea.

  • PDF

FPSO 선수부 갑판침수 현상에 대한 실험 및 수치적 검증 (Experiments and Numerical Validation for FPSO Bow Water Shipping)

  • 임호정;이현호;박선호;이신형
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.6-13
    • /
    • 2012
  • As ocean resources in shallow water areas are being exhausted, deep sea development is becoming common these days. Therefore floating type offshore structures are more competitive than fixed type structures, and FPSO is the most popular one these days. FPSO's are generally operated in a specific region and positioned to meet mostly head or bow waves in order to reduce roll motions. However this makes these vessels more vulnerable to green water around the bow region, and therefore the bow shape must be properly designed to mitigate green water damage. In the present study, experimental results for three different FPSO bow shapes in regular head waves were analyzed and compared to each other. Also CFD computations were carried out as a sample validation case for the database built for CFD code validation.

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.

Time Domain Analysis of Roll Response Considering Slowly Varying Nonlinear Excitation

  • Kim, Deok-Hun;Choi, Yoon-Rak
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.81-85
    • /
    • 2016
  • Nonlinear wave loads can lead to resonant responses of offshore structures in sum or difference frequencies. In this study, the roll motion of an FPSO with a low natural frequency is simulated in the time domain. To generate the time signals of wave loads, the quadratic transfer functions of the second-order excitations are calculated in the frequency domain. The equations of motions based on the time memory functions are used to evaluate the roll responses in irregular waves. The roll damping in empirical form is accounted for in the simulation.

FPSO 갑판 침입수 현상에 대한 선수부 형상 영향의 실험적 고찰 (Experimental Investigation of the Bow Configuration Influence on the Green Water on FPSO)

  • 이현호;임호정;이신형
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.9-14
    • /
    • 2009
  • The green water on deck has many harmful effects on the vessel in rough seas such as damages to hull structures, damages to cargos, increase of the downtime, decrease of the stability, and so on. Floating Production Storage and Offloading vessels (FPSOs) are operated in a specific location and are normally positioned to meet mostly head or bow waves in order to reduce the roll motions. But this makes FPSOs more vulnerable to green water around the bow region therefore the bow shape should be properly designed to mitigate the green water damage. In this paper, experimental results in regular head waves for three kinds of bow shapes are compared and some design considerations are proposed, with the building a database for computational fluid dynamics (CFD) validation in mind.

Air-gap effect on life boat arrangement for a semi-submersible FPU

  • Kim, Mun-Sung;Park, Hong-Shik;Jung, Kwang-Hyo;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.487-495
    • /
    • 2016
  • In the offshore project such as semi-submersible FPU and FPSO, the free fall type life boat called TEMPSC (Totally Enclosed Motor Propelled Survival Craft) has been installed for the use of an emergency evacuation of POB (People on Board) from the topside platform. For the design of life boat arrangement for semi-submersible FPU in the initial design stage, the drop height and launch angle are required fulfill with the limitation of classification society rule and Company requirement, including type of approval as applicable when intact and damage condition of the platform. In this paper, we have been performed the numerical studies to find proper arrangement for the life boats consider drop height in various environmental conditions such as wave, wind and current. In the calculations, the contributions from static and low frequency (LF) motions are considered from the hydrodynamic and mooring analysis as well as damage angle from the intact and damage stability analysis. Also, Air-gap calculation at the life boat positions has been carried out to check the effect on the life boat arrangement. The air-gap assessment is based on the extreme air-gap method includes the effect of 1st order wave frequency (WF) motions, 2nd order low frequency roll/pitch motion, static trim/heel and set down.