• Title/Summary/Keyword: FORESTED STREAMS

Search Result 7, Processing Time 0.019 seconds

Characteristics on Seasonal Variation of Stream Water Quality on Upland Headwater Streams in Forested Catchments (산림유역의 계류수질 현황 및 계절적 변동 특성)

  • Nam, Sooyoun;Lim, Honggeun;Li, Qiwen;Choi, Hyung Tae;Yang, Hyunje;Kim, Jaehoon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.220-230
    • /
    • 2022
  • Seasonal variability of water quality in the upland headwater streams in ten forested catchments (37.0~209.0 ha) was examined from April to November 2021. Here, seven physicochemical parameters were analyzed including pH, electrical conductivity (EC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N), total phosphorous (T-P), and BOD/TOC. The parameters were compared with those of lowerland rivers as middle and lower reaches within a watershed. The pH showed was low (6.4~6.9) during all the seasons, however, BOD and BOD/TOC in the fall season were 2-fold higher than in the spring and summer seasons. Based on environmental standards, the water quality level revealed that the upland headwater streams maintained the purity and cleanliness of water except for pH in the summer season. BOD/TOC of all the seasons and BOD of the fall season in the upland headwater streams were higher than that in the lowerland rivers, whereas the rest of the physicochemical parameters in the upland headwater streams were lower than that in the lowerland rivers. Additionally, the water quality level maintained the purity and cleanliness of water as "Good" in two reaches. The unique aspects of our study design enabled us to draw inferences about water quality characteristics with temporal and spatial analysis in upland headwater streams. This design will be useful for the long-term strategy of effective water quality management for integrated upland headwater streams and lowerland rivers within a watershed.

Flux of Dissolved Organic and Inorganic Constituents in Forested Headwater Streams

  • Choi, Byoung-Koo;Mangum, Clay N.;Hatten, Jeffery A.;Dewey, Janet C.;Ouyang, Ying
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1171-1179
    • /
    • 2012
  • Headwaters initiate material export to downstream environments. A nested headwater study examined the flux of dissolved constituents and water from a perennial stream and four ephemeral/intermittent streams in the Upper Gulf Coastal Plain of Mississippi. Water was collected during storm and baseflow conditions. Multiple linear regression was used to model constituent concentration and calculate flux. Event was the major source of water discharged from the ephemeral and intermittent streams however, baseflow was the major source for water discharged by the perennial stream during events. The perennial stream had an area weighted average yields of 10.1, 0.01, 1.03, 0.65 kg/ha/yr of DON (dissolved organic nitrogen), $NO_3^-$-N, $NH_4^+$-N and $PO_4^{-3}$, respectively while large variabilities existed between the ephemeral and intermittent streams. These findings highlight the importance of headwaters in protecting the low order drainage basins as a key to water quality within perennial streams.

Nonpoint Source Pollution Loadings from Land Uses on Small Watersheds (소유역의 토지이용에 따른 비점원오염 부하량)

  • 박승우;류순호;강문성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.115-127
    • /
    • 1997
  • Nonpoint source (NPS) pollution from small watersheds has recently been brought into attention as a potential pollutant to streams and tnbutaries, as majority of them are experiencing water quality degradation. This necessiates the quantification of NPS loadings from agricultural and forested lands. And this study attempts to quantify daily loadings from forested and farm lands using hydrologic and water quality monitoring. The hydrologic monitoring program consists of five water level gauging stations along creeks and stream at the Banweol reservoir watershed having 1220 hectare in size. Water sam pies were taken and analyzeel periodically at the streamf low gaging sites and tributaries. Soil samples were also taken and the chemical constitutes analyzed. The primary results indicate that the major sources of pollution were small villages and dairy farms on the watersheds, constituting two-third of total nutrient loadings to the reservoir. However, the loadings from paddies and upland areas may cause a problem to the water quality of the reservoir and stream as the measured levels of total nitrogen and phosporus are not low enough to ignore. Further studies are needed to quantify the effects of landuses and treatments at a watershed scale.

  • PDF

Soil Physical and Hydrological Properties Affected by Forest Harvesting within Riparian Areas of Forested Headwaters (산지계류 수변지역에서 산림벌채 후 토양의 물리적.수문학적 특성 변화)

  • Choi, Byoungkoo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.538-545
    • /
    • 2012
  • This study addressed soil disturbances following harvesting as well as soil physical and hydrological properties within three first-order headwater catchments characterized by ephemeral-intermittent streams. Four treatments representing a range of potential Best Management Practices(BMPs) for ephemeral-intermittent streams were used; BMP1, BMP2, clearcut and reference. This study includes 1 year of pre- and post-harvest observations. Results showed that post-harvest disturbances were closely related with harvesting intensity and generally tended to reflect changes in soil physical and hydrological properties following harvest with the except of bulk density and porosity. Forest clearcutting decreased macroporosity and saturated hydraulic conductivity, and increased soil resistence as a result of severe soil disturbances thereby increasing soil erosion. These impacts were reduced by implementing two BMP treatments during harvesting activities. The finding support the use of either BMP treatments for ephemeral-intermittent streams, however, the additional measure of leaving logging debris in BMP2 did not cover enough soil surface to reduce erosion.

Localized Habitat Use of Endangered Oriental Storks (Ciconia boyciana) Recently Reintroduced into South Korea

  • Ha, Dong-Soo;Kim, Su-Kyung;Shin, Yong-Un;Yoon, Jongmin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.293-297
    • /
    • 2021
  • The oriental stork (Ciconia boyciana) is listed as an endangered species internationally. Its resident population has been extirpated in South Korea since 1971. Its predicted historical habitat included forests (54%), rice paddy fields (28%), grasslands (17%), river-streams (less than 1%), and villages (less than 1%) based on pre-extirpation records in a previous study. However, habitat attributes of recently reintroduced oriental storks since 2015 remain unknown. To examine habitat use patterns and home ranges of recently reintroduced oriental storks, 2015-2017 tracking data of 17 individuals were used to analyze their spatial attributes with a Kernel Density Estimate method and breeding status. Their habitat use patterns from peripheral to core areas were highly associated with increasing rice paddy fields (26%) and decreasing forested areas (55%). Scale-dependent home ranges were 51% smaller for breeders than for non-breeders on average. Our study results highlight that the habitat use pattern of reintroduced oriental storks seems to be comparable to the historical pattern where the used area is likely to be more centralized for breeders than for non-breeders in South Korea. Furthermore, the direction of habitat management for oriental storks should focus on biodiversity improvement of rice paddy fields with chemical free cultivation and irrigation.

Habitat Suitability Modeling of Endangered Cyathea spinulosa (Wall. ex Hook.) in Central Nepal

  • Padam Bahadur Budha;Kumod Lekhak;Subin Kalu;Ichchha Thapa
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.65-72
    • /
    • 2023
  • The endangered species of Cyathea spinulosa (tree ferns) are among the least concerned ferns of Nepal that bring threats to them and their habitat. A way to reduce such threats is by maintaining a database of species' whereabouts and generating a scientific understanding the habitat preferences. This will eventually help in the formulation of conservation plans for the species. This research aimed to characterize the suitable habitat of C. spinulosa by enumerating the location of species in the Panchase Forests of central Nepal. The statistical index method was applied to relate the occurrence locations of species with various environmental factors for the development of indices. The suitable habitat of C. spinulosa (more and most suitable categories) covered 119 km2 and accounted for 43% of the total area studied. 74.4% of occurrence locations of C. spinulosa were recorded from these habitats. The habitat characteristics suitable for C. spinulosa were: proximity to streams (high moisture), land covered by forested area (shady area), mid-elevations of hills about 1,000 m to 2,000 m (sub-tropical climate), slope gradient of 20° to 40° (steep slopes), and northern to eastern aspects. These habitat characteristics could be considered for in-situ protection of tree ferns and designating the conservation plots.

Habitat Characteristics of Benthic Macroinvertebrates at a Headwater Stream in the Yeonyeopsan (Mt.) (연엽산 산지계류에 있어서 저서성 대형무척추동물의 서식특성)

  • Jang, Su-Jin;Nam, Sooyoun;Kim, Suk-Woo;Koo, Hyo-Bin;Kim, Ji-Hyeon;Lee, Youn-Tae;Chun, Kun-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.334-344
    • /
    • 2020
  • A total of 24 families, 44 species, and 658 benthic macroinvertebrates were identified, and Ecdyonurus dracon Kluge (13%) was the dominant species in forested streams within the Yeonyeopsan (Mt.). A total of four habit categories (i.e., clingers (56%), burrowers (19%), swimmers (14%), and sprawlers (56%)) were identified, and clingers were the dominant habit at all survey points except point one (UP1). Habitat characteristics were depended on the hydraulic factors (e.g., flow velocity, depth, and substrates), water quality (e.g., DO and water temperature), and the habitat characteristics were differed in the riffle, which has a faster the flow velocity, compared by in the stagnant pool. In other words, in riffles, the clingers dominated in high flow velocity with the large maximum and median grain size for substrates in the habitats regardless of depth, but the burrowers and sprawlers were dominant in low flow velocity with the small maximum and median grain size for substrates in the habitats. Moreover, DO and flow velocity were in positive correlation (y = 0.6666x - 0.659, R2 = 0.0851), and the habitat for burrowers was wider than that for sprawlers or clingers. The water depth was negatively correlated with water temperature (y = -26.397x + 283.87, R2 = 0.1802) since the water temperature is more sensitive to insolation in shallow depth. pH was positively correlated with water temperature. The investigation of the habitat characteristics by separating the relations between pH and DO in upstream and downstream showed the low pH and high DO in the upstream with a high crown density of 68%, regardless of community composition. On the other hand, high pH and low DO in the downstream with a relatively low crown density of 51%. It was considered that the riparian forest played a role in suppressing the growth of attached algae and the controlling water temperature in headwater streams. Our findings identified the habitat characteristics of benthic macroinvertebrates in a headwater stream. We expected that the finding can provide reference data for suggesting conservation and management plans in a headwater stream and increasing academic value.