• 제목/요약/키워드: FOREST CARBON

Search Result 881, Processing Time 0.025 seconds

Estimation of Carbon Storage for Trees in Forest Ecosystem in the National Parks of Korea (한국 국립공원 산림생태계의 수목 탄소저장량 평가)

  • Lee, Sang-Jin;Park, Hong-Chul;Park, Gwan-Soo;Kim, Hyoun-Sook;Lee, Chang-Min;Kim, Jin-Won;Sim, Gyu-Won;Choi, Seung-Woon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.1-16
    • /
    • 2022
  • The purpose of this study is to quantitatively evaluate the amount of carbon storage for trees in forest ecosystem to support the foundation for carbon neutrality implementation in Korea National Park. It targeted 22 national parks designated and managed as national parks in Korea, and conducted research on forest trees in the terrestrial ecosystem among various natural and ecological carbon sink. The survey and analysis method followed the IPCC guidelines and the National Greenhouse Gas Inventory in Korea. The amount of tree carbon storage in the forest ecosystem of Korea National Park was confirmed to be about 218,505 thousand CO2-ton and the amount of carbon storage per unit area was 570.8 CO2-ton per hectare. Compared to 299.7 CO2-ton per hectare, the average carbon storage per unit area of the entire Korean forest, it was found that about twice as much carbon was stored when assuming the same area. In other words, it means that the tree carbon storage function of the national park is about twice as high as that of the average tree carbon storage function of entire Korean forest. It has great implications in Korea National Park not only provides biodiversity promotion and exploration services as a national protected area, but also performs excellent functions as a carbon sink.

Investigating the value optimized forest carbon offset projects based on forest management scenarios in South Korea

  • Woo, Heesung;Park, Joowon;Park, Soo-Kyoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.951-962
    • /
    • 2020
  • One hundred ninety-five countries reached agreement on a new climate treaty in Paris, France to reduce the carbon emissions. South Korea has been selected as a target country for reducing greenhouse gas (GHG) obligations since 2020. In this context, the Korean government developed several GHG emissions reduction programs using forests called the "Forest carbon offset scheme (FCOS)." The forest management method is one of the tools to implement FCOS. Most of the participants registered forest management as the preferred methodology to participate in the FCOS. For a successful implementation of the FCOS, it is necessary to explore the optimal methods by considering the cost-effective aspect of conducting the forest management as a tool to increase carbon absorption. In this context, this study investigated the value optimized FCOS projects based on the forest management methodology in South Korea. Three forest management scenarios, 1) extending the final age of maturity of Pinus densiflora stands (S1), 2) extending the final age of maturity of Quercus acutissima stands (S2), and 3) reforestation with new species (Pinus densiflora to Quercus acutissima) (S3), were examined and evaluated to identify the optimal carbon absorption and value optimized economic perspective. The results of the scenario-based modelling indicated that S3 showed value optimized from an economical perspective, and S2 was the most effective method to absorb carbon among the scenarios. It is anticipated that this paper will contribute to provide valuable information by presenting innovative approaches as a value optimized FCOS implementing tool in a GHG reduction program in South Korea.

Estimation of carbon sequestration in natural forests - A Geospatial Approach - (자연 삼림의 탄소 분리 추정에 관한 연구)

  • Ramachandran, Ramachandran;Jayakumar, S.;Heo, Joon;Kim, Woo-Sun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.359-362
    • /
    • 2007
  • Estimation of carbon in the natural forest regions is a pre-requisite for carbon management. In the light of increasing carbon dioxide concentration in the atmosphere, the amount of carbon present in the plants and soils are very much needed to estimate the sequestered carbons stock of any region. Carbon stock estimation studies are limited in India, especially in the natural forest regions of Eastern ghats of Tamil Nadu. Remote sensing, Geographical Information System (GIS) and global positioning system (GPS) were used along with extensive field and laboratory works to estimate the carbon stock in the living biomass and soil. About five forest types were identified and mapped using satellite data. The total biomass carbon including above and below ground were 2.74 Tg and the total soil organic carbon was 3.48 Tg. This study has yielded significant information about the carbon stock in a natural forest region and it could be used for future comparative studies.

  • PDF

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

Biodiversity Conservation and Carbon Sequestration in Agroforestry Systems of the Mbalmayo Forest Reserve

  • Mey, Christian Boudoug Jean;Gore, Meredith L.
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.91-103
    • /
    • 2021
  • We conducted an analysis of agroforestry system efficiency to conserve biodiversity in the Mbalmayo Forest Reserve (MFR) between March 2018 and June 2018. A synthesis of forest fragmentation data observed on multiple strata and scale satellite imageries over 31 years, between 1987 and 2018 as well as, the use of both a floristic and a faunal surveys, revealed that although 29.28% of natural forests was fragmented and converted to agroforests landscapes, banana and cocoa based agroforest appeared to perform the most relevant records in carbon storage and to attract wild terrestrial and avifauna. Analysis of NDVI, NDWI and Iron Oxyde helped monitor the vegetation cover of the reserve, and differentiate natural and fragmented classes, majority of conserved forest wetlands and agroforestry systems, and a minority of natural dryland forest. Further analysis also revealed significant correlations between NDVI and Shannon Index, and between NDVI and carbon stock. Based on the NDVI value and the equation Y=3.827×X-1.587 (where Y for the carbon stocks and X for NDVI value), we estimated the total carbon stock of the forest reserve at about 99557.6 tonnes, and its mean value at about 8.491 tons/ha. Nevertheless, environmental efforts to sustainably manage agroforestry landscape appear to be a relevant key to conserve wild biodiversity and mitigate climate change at the level of the Mbalmayo Forest Reserve. If anthropogenic activities have deeply changed the reserve's natural landscape, reduced its carbon sequestration performance, and wildlife conservation status, forest wetlands appear to remain its most conserved places and the best refuge for wild fauna still occurring in diverse strata of the MFR.

Estimation of Carbon Stock by Development of Stem Taper Equation and Carbon Emission Factors for Quercus serrata (수간곡선식 개발과 국가탄소배출계수를 이용한 졸참나무의 탄소저장량 추정)

  • Kang, Jin-Taek;Son, Yeong-Mo;Jeon, Ju-Hyeon;Yoo, Byung-Oh
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • This study was conducted to estimate carbon stocks of Quercus serrata with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010), and method provided in IPCC GPG was applied to estimate carbon storage and removals. Performance in predicting stem diameter at a specific point along a stem in Quercus serrata by applying Kozak's model,$d=a_1DBH^{a_2}a_3^{DBH}X^{b_1Z^2+b_2ln(Z+0.001)+b_3{\sqrt{Z}}+b_4e^Z+b_5({\frac{DBH}{H}})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume tables of Quercus serrata were derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.65t/m^3$, BEF=1.55, R=0.43) of Quercus serrata. As a result of carbon stock analysis by age class in Quercus serrata, carbon stocks of IV age class (11,358 ha, 36.5%) and V age class (10,432; 33.5%) which take up the largest area in distribution of age class were 957,000 tC and 1,312,000 tC. Total carbon stocks of Quercus serrata were 3,191,000 tC which is 3% compared with total percentage of broad-leaved forest and carbon sequestration per hectare(ha) was 3.8 tC/ha/yr, $13.9tCO_2/ha/yr$, respectively.

Analysis of Forest Types and Estimation of the Forest Carbon Stocks Using Landsat Satellite Images in Chungcheongnam-do, South Korea (Landsat 위성영상을 이용한 충청남도 임상 분석 및 산림 탄소저장량 추정)

  • Kim, Sung Hoon;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2014
  • In this study, forest types in Chungheongnam-do were analyzed using Landsat satellite images and digital forest type map as a means to estimate forest carbon stocks. NDVI and Tasseled Cap, ISODATA, and supervised classification among others were used to analyze the forest types. The forest carbon stocks of Chungcheongnam-do were estimated utilizing forest statistical data derived from the classified results. The results indicate that the analysis of forest types through supervised classification yielded the highest overall accuracy in analyzing forest types using satellite images. Coniferous forests(49.3%) accounted for the highest proportion in all the forest types of Chungcheongnam-do, followed by deciduous forests(28.0%) and mixed forests(22.7%). The results of a comparative analysis between forest carbon stocks estimates made using the modified digital forest type map and other estimation methods showed that the method using Tasseled Cap and unsupervised classification yielded the most similar forest carbon stock estimates. The most significant difference, though, was made when only the digital forest type map was used. It is expected that if carbon stocks are estimated by integrating satellite images and digital forest type maps in the future, more accurate results can be derived in estimating forest carbon stocks at a national level.

  • PDF

Mapping of Spatial Distribution for Carbon Storage in Pinus rigida Stands Using the National Forest Inventory and Forest Type Map: Case Study for Muju Gun (국가산림자원조사 자료와 임상도를 활용한 리기다소나무림의 탄소 저장량에 대한 공간분포도 작성: 무주군의 사례로)

  • Seo, Yeonok;Jung, Sungcheol;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.258-266
    • /
    • 2017
  • This study was conducted to develop a carbon storage distribution map of Pinus rigida stands in Muju-gun by using of the National Forest Inventory data and digital forest map. The relationships between the stand variables such as height, age, diameter at breast height (DBH), crown density and aboveground biomass of Pinus rigida were analyzed. The results showed that the crown density had the highest positive correlation with a value of 0.74 followed by the height variable with value of 0.61. The aboveground biomass regression models were developed to estimate biomass and carbon storage map. The results of this study showed that the average carbon storage was 58.2 ton C/ha while the total carbon stock of rigida pine forests in Muju area was estimated to be 430,963 C ton.

Application and Development of Carbon Emissions Factors for Deciduous Species in Republic of Korea - Robinia pseudoacacia, Betula platyphylla, and Liriodendron tulipifera - (국내 활엽수종의 탄소배출계수 개발 및 적용 - 아까시나무, 자작나무, 백합나무를 대상으로 -)

  • Lee, Sun Jeoung;Yim, Jong Su;Kang, Jin Take;Kim, Raehyun;Son, Yowhan;Park, Gawn Su;Son, Yeong Mo
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), all parties have to submit the national GHG inventory report. Estimating carbon stocks and changes in Land Use, Land-Use Changes and Forestry (LULUCF) needs an activity data and emission factors. So this study was conducted to develop carbon emission factor for Robinia pseudoacacia L., Betula platyphylla var. japonica, and Liriodendron tulipifera. As a result, the basic wood density ($g/cm_3$) was 0.64 for R. pseudoacacia, 0.55 for B. platyphylla, and 0.46 for L. tulipifera. Biomass expansion factor was 1.47 for R. pseudoacacia, 1.30 for B. platyphylla, and 1.24 for L. tulipifera. Root to shoot ratio was 0.48 for R. pseudoacacia, 0.29 for B. platyphylla, and 0.23 for L. tulipifera. Uncertainty of estimated emission factors on three species ranged from 3.39% to 27.43% within recommended value (30%) by IPCC. We calculated carbon stock and change using these emission factors. Three species stored carbon in forest and net $CO_2$ removal was $1,255,398\;t\;CO_2/yr$ during 5 years. So we concluded that our result could be used as emission factors for national GHG inventory report on forest sector.

Assessment of Above Ground Carbon Stock in Trees of Ponda Watershed, Rajouri (J&K)

  • Ahmed, Junaid;Sharma, Sanjay
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • Forest sequesters large terrestrial carbon which is stored in the biomass of tree and plays a key role in reducing atmospheric carbon. Thus, the objectives of the present study were to assess the growing stock, above ground biomass and carbon in trees of Ponda watershed of Rajouri district (J&K). IRS-P6 LISS-III satellite data of October 2010 was used for preparation of land use/land cover map and forest density map of the study area by visual interpretation. The growing stock estimation was done for the study area as well as for the sample plots laid in forest and agriculture fields. The growing stock and biomass of trees were estimated using species specific volume equations and using specific gravity of wood, respectively. The total growing stock in the study area was estimated to be $0.25million\;m^3$ which varied between $85.94m^3/ha$ in open pine to $11.58m^3/ha$ in degraded pine forest. However in agriculture area, growing stock volume density of $14.85m^3/ha$ was recorded. Similarly, out of the total biomass (0.012 million tons) and carbon (0.056 million tons) in the study area, open pine forest accounted for the highest values of 43.74 t/ha and 19.68 t/ha and lowest values of 5.68 t/ha and 2.55 t/ha, respectively for the degraded pine forest. The biomass and carbon density in agriculture area obtained was 5.49 t/ha and 2.47 t/ha, respectively. In all the three forest classes Pinus roxburghii showed highest average values of growing stock volume density, biomass and carbon.