• Title/Summary/Keyword: FOOT PRESSURE

Search Result 529, Processing Time 0.034 seconds

Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties (미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향)

  • Yoo, Chan-Il;Won, Yonggwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.

Effects of hallux valgus angle on one-legged stance and gait parameters in young adults: a preliminary study

  • Ji, Minkyung;Park, Hyodong;Lee, Heeyeon;Yoo, Minjoo;Ko, Eunsan;Woo, Youngkeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Objective: Hallux valgus (HV) is a common musculoskeletal deformity that is accompanied with pain and continues to decrease one's quality of life and ability to perform daily life activities by affecting gait and static stability. Therefore, this study aimed to investigate the effect of the angle of HV (HVA) and to compare the one-legged stance and gait parameters in young adults with less HV and severe HV. Design: Cross-sectional study. Methods: Forty young adults were divided into two groups, where HVA ≥15° (n=20) was defined as HV, and HVA <15° (n=20) was defined as normal. For balance ability, the center of pressure (COP) path, velocity, length of axis of the COP path, deviation of the x-axis and y-axis, and percentage of foot pressure were measured, and gait, the foot rotation angle, step length, percentage of each phase of the gait cycle, time change from the heel to forefoot, and maximum pressure of the forefoot and midfoot were measured. Results: Significant differences were found in sway length and time change from heel to forefoot during walking between the normal and HV groups (p<0.05). Most parameters were not associated with the HVA, but parameters such as length of axis and time to change from heel to forefoot were significantly associated with the HVA (p<0.05). Conclusions: These results suggest that most one-legged stance and gait parameters were not significantly affected by the HVA in young adults; therefore, future studies are needed in order to address other dynamic parameters and other methods of gait analysis for detecting clinically meaningful conditions.

A Development of an Insole Type Local Shear Measurement Transducer and Measurements of Local Plantar Shear Force During Gait (인솔형 국부 전단센서의 개발 및 보행 시 발바닥의 국부 전단력 측정)

  • Jeong Im Sook;Ahn Seung Chan;Yi Jin Bok;Kim Han Sung;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.213-221
    • /
    • 2005
  • An insole type local shear force measurement system was developed and local shear stresses in the foot were measured during level walking. The shear force transducer based on the magneto-resistive principle, was a rigid 3-layer circular disc. Sensor calibrations with a specially designed calibration device showed that it provided relatively linear sensor outputs. Shear transducers were mounted on the locations of four metatarsal heads and heel in the insole. Sensor outputs were amplified, decorded in the bluetooth transmission part and then transferred to PC. In order to evaluate the developed system, both shear and plantar pressure measurements, synchronized with the three-dimensional motion analysis system, were performed on twelve young healthy male subjects, walking at their comfortable speeds. The maximum peak pressure during gait was 5.00kPa/B.W at the heel. The time when large local shear stresses were acted correlated well with the time of fast COP movements. The anteroposterior shear was dominant near the COP trajectory, but the mediolateral shear was noted away from the COP trajectory. The vector sum of shear stresses revealed a strong correlation with COP movement velocity. The present study will be helpful to select the material and to design of foot orthoses and orthopedic shoes for diabetic neuropathy or Hansen disease.

A study on the ground reaction forces and plantar pressure variables in different safety shoes and applying insole during walking (안전화 형태와 Insole 착용 유무에 따른 보행동작시 하지부위에 대한 지면반발력과 압력분포 부하)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • The purpose of this study was to compare the ground reaction forces and plantar pressure variables among three different safety shoes (Type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety hoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The ground reaction force was measured using a 3 dimensional motion analysis system. Plantar pressures were measured Pedar Mobile foot pressure scan system. The ground reaction force variables were not significantly different among three different shoe types and insole conditions. After insertion insole, plantar pressure distributions were improved. These results suggest that the type 1 safety shoes was superior than other safety shoes in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes design and insole on practical value prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics) (초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성))

  • Hong, Jong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

The Effects of Visual Biofeedback Information on Hyperextended Knee Control

  • Jung, Sung-hoon;Jeon, In-cheol;Ha, Sung-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Purpose: A hyperextended knee is described as knee pain associated with an impaired knee extensor mechanism. Additionally, a hyperextended knee may involve reduced position sense of the knee joint that decreases the individual's ability to control end-range knee extension movement. The purpose of this study was to investigate the effects of visual biofeedback information for plantar pressure distribution on knee joint angle and lower extremity muscle activities in participants with hyperextended knees. Methods: Twenty-three participants with hyperextended knees were recruited for the study. Surface electromyography signals were recorded for the biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior muscle activities. The plantar pressure distribution was displayed and measured using a pressure distribution measuring plate. Knee joint angle kinematic parameters were recorded using a motion analysis system. The visual biofeedback condition was the point at which the difference between the forefoot and backfoot plantar foot pressure on the monitor was minimized. The Wilcoxon signed-rank test was used to determine the significance between the visual biofeedback condition and the preferred condition. Results: The knee joint angle was significantly decreased in the visual biofeedback condition compared to that in the preferred condition (p<0.05). The rectus femoris and gastrocnemius muscle activities were significantly different between the visual biofeedback and preferred conditions (p<0.05). Conclusion: The results of this study showed that visual biofeedback of information about plantar pressure distribution is effective for correcting hyperextended knees.

Investigation of the Ground Reaction Force Parameters According to the Shoe's heel Heights and Landing Distance during Downward Stairs on Bus (버스계단 내리기 시 구두 힐 높이와 착지거리에 따른 지면반력 파라미터 조사)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • The purpose of this study was to investigate the GRF(ground reaction force) parameters according to the shoes's heel heights and ground landing distances during downward stairs on bus. Participants selected as subject were consisted of young and healthy women(n=9, mean age: $21.30{\pm}0.48$ yrs, mean height: $164.00{\pm}3.05cm$, mean body mass: $55.04{\pm}4.41kg$, mean BMI: $20.47{\pm}1.76kg/m^2$, mean foot length: $238.00{\pm}5.37mm$). They were divided into 2-types of shoe's heel heights(0 cm/bare foot, 9 cm) and also were divides into downward stairs with 3 types of landing distance(20 cm, 35 cm, 50 cm). A one force-plate was used to collect the GRF(AMTI, USA) data from the sampling rate of 1000 Hz. The GRF parameters analyzed were consisted of the medial-lateral GRF, anterior-posterior GRF, vertical GRF, loading rate, Center of Pressure(${\Delta}COPx$, ${\Delta}COPy$, COP area) and Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) during downward stairs on bus. Medial-lateral GRF and vertical GRF didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 9 cm shoes heel showed higher vertical GRF than that of 0 cm bare foot in landing distance of 50 cm. Also anterior-posterior GRF didn't show significant difference statistically according to the shoe's heel heights, but landing distance of 20 cm showed higher than that of landing distances of 35 cm and 50 cm in anterior-posterior GRF. Loading rate didn't show significant difference statistically according to the landing distance, but 9 cm shoe's heel showed higher than that of 0 cm bare foot during downward stairs. The ${\Delta}COPy$ and COP area didn't show significant differences statistically according to the shoe's heel heights and landing distance, but 0 cm bare foot showed higher than that of 9 cm shoe's heel in ${\Delta}COPx$. Dynamic Postural Stability Index(MLSI, APSI, VSI, DPSI) didn't show significant differences statistically according to the landing distance, but 9 cm shoe's heel showed decreased value than that of 0 cm bare foot in dynamics balance. Considering the above, parameters of GRF showed different characteristics according to the shoe's heel heights and ground landing distances during downward stairs on bus.

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • v.39 no.6
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.

A Study on the Gait Test Human Dynamic Simulation Using Gait Motion Capture and Foot Pressure Measurement : Analysis of Gait Pattern with Wearing Military Equipment of Korean Male Adult (Gait Motion Capture 및 족압 측정을 이용한 보행특성시험 및 동력학적 인체 시뮬레이션 연구 : 한국인 성인 남자의 군장착용 보행 특성 해석)

  • Lee S.H.;Lee Y.S.;Choi Y.J.;Lee J.W.;Chae J.W.;Choi E.J.;Kim I.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.877-880
    • /
    • 2005
  • This paper suggests gait analysis and gait simulation method using Gait Motion Capture equipment and plantar pressure measurement system. The gait of normal person and how it will be effected by added weight with wearing military equipments are studied by suggested method. It is measured that a change of gait pattern when wears military equipments with Korean male adult(height 180 cm, weight 70 kg) and simulated its results.

  • PDF