• Title/Summary/Keyword: FNR

Search Result 56, Processing Time 0.028 seconds

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

Comparison and analysis of multiple testing methods for microarray gene expression data (유전자 발현 데이터에 대한 다중검정법 비교 및 분석)

  • Seo, Sumin;Kim, Tae Houn;Kim, Jaehee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.971-986
    • /
    • 2014
  • When thousands of hypotheses are tested simultaneously, the probability of rejecting any true hypotheses increases, and large multiplicity problems are generated. To solve these problems, researchers have proposed different approaches to multiple testing methods, considering family-wise error rate (FWER), false discovery rate (FDR) or false nondiscovery rate (FNR) as a type I error and some test statistics. In this article, we discuss Bonferroni (1960), Holm (1979), Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001) procedures based on T statistics, modified T statistics or local-pooled-error (LPE) statistics. We also consider Sun and Cai (2007) procedure based on Z statistics. These procedures are compared in the simulation and applied to Arabidopsis microarray gene expression data to identify differentially expressed genes.

Design of Optimal Water Treatment Processes based on Required Water Quality for Utilization of the Saemanguem Lake Water (새만금 담수 활용을 위한 요구수질별 최적의 수처리 방안 연구)

  • Choi, Kyung-Sook;Lee, Kwang-Ya
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • This study was aimed at providing optimal water treatment processes based on various required water quality for utilization of the Saemangeum lake water as water supply alternatives to this area. Various water treatment methods were considered for investigation there characteristics, pollution removal rate, pros and cons in order to select appropriate water treatment processes satisfying the required water quality for different purposes. As results, the FDA system for SS, turbidity, BOD removals, UV treatment for coliform, BOD removals, FNR process for T-N, T-P removals, and ECRS process for desalination purpose were found to be better methods in senses of removal efficiency, operation and maintenance. Case studies were provided with cost analysis for field applications in the Saemangeum area.

Periodic-and-on-Event Message-Aware Automotive Intrusion Detection System (Periodic-and-on-Event 메시지 분석이 가능한 차량용 침입탐지 기술)

  • Lee, Seyoung;Choi, Wonsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.373-385
    • /
    • 2021
  • To provide convenience and safety of drivers, the recent vehicles are being equipped with a number of electronic control units (ECUs). Multiple ECUs construct a network inside a vehicle to share information related to the vehicle's status; in addition, the CAN protocol is normally applied. As the modern vehicles provide highly convenient and safe services, it provides many types of attack surfaces; as a result, it makes them vulnerable to cyber attacks. The automotive IDS (Intrusion Detection System) is one of the promising techniques for securing vehicles. However, the existing methods for automotive IDS are able to analyze only periodic messages. If someone attacks on non-periodic messages, the existing methods are not able to properly detect the intrusion. In this paper, we present a method to detect intrusions including an attack using non-periodic messages. Moreover, we evaluate our method on the real vehicles, where we show that our method has 0% of FPR and 0% of FNR under our attack model.

Odds curve for two classification distributions (두 분류 분포를 위한 오즈 곡선)

  • Hong, Chong Sun;Oh, Se Hyeon;Oh, Tae Gyu
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.225-238
    • /
    • 2021
  • The ROC, TOC, and TROC curves, which are visually descriptive methods of exploring the performance of the binary classification model, are implemented with TP, TN, FP, FN which consist of the confusion matrix, as well as their ratios TPR, TNR, FPR, FNR. In this study, we consider two types odds and then propose an odds curve representing these odds. And show the relationship between the odds curve and ROC curve. Based on the odds curve, we propose not only two statistics that measure the discriminant power of the odds curve but also the criteria for validation ratings of the odds curve. According to the shape of the odds curves, two classification distributions can be estimated and a criterion for validation ratings can be determined. The odds curve can be meaningfully used like other visual methods, and two kinds of measures for the discriminant power can be also applied together as an alternative criterion.

Characteristic Analysis of Tropospheric Ozone Sensitivity from the Satellite-Based HCHO/NO2 Ratio in South Korea (위성 기반 HCHO/NO2 비율을 통한 국내 대류권 오존 민감도 특성 분석)

  • Jinah Jang;Yun Gon Lee ;Jeong-Ah Yu;Kyoung-Hee Sung;Sang-Min Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.563-576
    • /
    • 2023
  • In this study nitrogen dioxide (NO2), formaldehyde (HCHO) from the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI), OMI/ Microwave Limb Sounder (MLS) tropospheric column ozone (TCO), and Airkorea ground-based O3 data were analyzed to examine the photochemical reaction relationship between tropospheric ozone and its precursors nitrogen oxides (NOx) and volatile organic compounds (VOCs). As a result of analyzing the trend of long-term changes from 2006 to 2020 using OMI satellite data, TCO showed an increasing trend, NO2 steadily decreased, and HCHO continued to increase in Northeast Asia. In addition, formaldehyde nitrogen dioxide ratio (FNR; HCHO/NO2 ratio), an indicator of ozone sensitivity, is gradually increasing, which means that the VOC-limited regime is decreasing. This study conducted a sensitivity analysis of ozone generation using TROPOMI FNR and ground-based ozone (O3) over the recent years (2019~2022) to identify the possible cause for the continuous increase of ozone in Korea. Similar to the previous studies, VOC-limited and transitional regimes appeared in megacities, and VOC-limited regimes also appeared in areas where major power plants were located. In VOC-limited regimes, in other words, areas where NOx is excessively saturated, the reduction in NOx emissions may have weakened the ozone titration and thus led to the increase of ozone. Therefore, VOC emissions should be reduced in the short term rather than NOx emissions to reduce ozone concentrations under the VOC-limited regime.

Severity-based Software Quality Prediction using Class Imbalanced Data

  • Hong, Euy-Seok;Park, Mi-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.73-80
    • /
    • 2016
  • Most fault prediction models have class imbalance problems because training data usually contains much more non-fault class modules than fault class ones. This imbalanced distribution makes it difficult for the models to learn the minor class module data. Data imbalance is much higher when severity-based fault prediction is used. This is because high severity fault modules is a smaller subset of the fault modules. In this paper, we propose severity-based models to solve these problems using the three sampling methods, Resample, SpreadSubSample and SMOTE. Empirical results show that Resample method has typical over-fit problems, and SpreadSubSample method cannot enhance the prediction performance of the models. Unlike two methods, SMOTE method shows good performance in terms of AUC and FNR values. Especially J48 decision tree model using SMOTE outperforms other prediction models.

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Metal pad Discolored Image Classification Algorithm using Geometric Texture Information (기하학적 텍스쳐 정보를 이용한 금속 패드 변색영상 분류 알고리즘)

  • Cui, Xue Nan;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.469-475
    • /
    • 2010
  • This paper presents a method of classifying discolored defects of metal pads using geometric texture for AFVI (Automated Final Vision Inspection) systems. In PCB manufacturing process, the metal pads on PCB can be oxidized and discolored partly due to various environmental factors. Nowadays the discolored defects are manually detected and rejected from the process. This paper proposes an efficient geometric texture feature, SUTF (Symmetry and Uniformity Texture Feature) based on the symmetric and uniform textural characteristics of the surface of circular metal pads for automating AFVI systems. In practical experiments with real samples acquired from a production line, 30 discolored images and 1232 roughness images are tested. The experimental results demonstrate that the proposed method using SUTFs provides better performance compared to Gabor feature with 0% FNR (False Negative Rate) and 1.46% FPR (False Positive Rate). The performance of the proposed method shows its applicability in the real manufacturing systems.

Anomaly Sewing Pattern Detection for AIoT System using Deep Learning and Decision Tree

  • Nguyen Quoc Toan;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has recently gained popularity. Deep neural networks (DNNs) have achieved great success in many applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-based system for smart sewing automation using edge devices. Our technique included developing a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for our defective sewing stitches detection model, to detect anomalies and classify the sewing patterns. According to the experimental testing, the proposed approach achieved a perfect score with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0, and a speed of 0.07 seconds with file size 2.43MB.